【題目】(6分)如圖,在建立了平面直角坐標系的正方形網(wǎng)格中,A(2,2),B(1,0),C(3,1)
(1)畫出ΔABC關于x軸對稱的ΔA1B1C1.
(2)畫出將ΔABC繞點B逆時針旋轉(zhuǎn)900,所得的ΔA2B2C2.
(3)直接寫出A2點的坐標.
【答案】(1)作圖見試題解析;(2)作圖見試題解析;(3)(-1,1).
【解析】
試題①根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關于x軸的對稱點A1、B1、C1的位置,然后順次連接即可;
②根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞點B按照逆時針旋轉(zhuǎn)90°后的對應點A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出A2點的坐標.
試題解析:①如圖所示,△A1B1C1即為△ABC關于x軸對稱的圖形;
②如圖所示,△A2B2C2即為△ABC繞原點B按逆時針旋轉(zhuǎn)90°的三角形,
A2點的坐標是(-1,1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A是半徑為6cm的⊙O上的定點,動點P從A出發(fā),以πcm/s的速度沿圓周按順時針方向運動,當點P回到A時立即停止運動.設點P運動時間為t(s);
(1)當t=6s時,∠POA的度數(shù)是________;
(2)當t為多少時,∠POA=120°;
(3)如果點B是OA延長線上的一點,且AB=AO,問t為多少時,△POB為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校團委舉辦了一次“中國夢我的夢”演講比賽滿分10分,學生得分均為整數(shù),成績達6分以上(含6分)為合格,達到9分以上(含9分)為優(yōu)秀.如圖所示是這次競賽中甲、乙兩組學生成績分布的條形統(tǒng)計圖.
(1)補充完成下列的成績統(tǒng)計分析表:
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲 | 6 | 3.41 | 90% | 20% | |
乙 | 7.1 | 1.69 | 80% | 10% |
(2)小明同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是______組學生;(填“甲”或“乙”)
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若四邊形、四邊形都是正方形,顯然圖中有,;
當正方形繞旋轉(zhuǎn)到如圖的位置時,是否成立?若成立,請給出證明;若不成立,請說明理由;
當正方形繞旋轉(zhuǎn)到如圖的位置時,延長交于,交于.
①求證:;
②當,時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售一種商品,通過記錄,發(fā)現(xiàn)該商品從開始銷售至銷售的第x天結(jié)束時(x為整數(shù))的總銷量y(件)滿足二次函數(shù)關系,銷量情況記錄如下表:
x | 0 | 1 | 2 | 3 |
y | 0 | 58 | 112 | 162 |
(1)求y與x之間的函數(shù)關系式(不需要寫自變量的取值范圍);
(2)求:銷售到第幾天結(jié)束時,該商品全部售完?
(3)若第m天的銷量為22件,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系,標注原點以及x軸、y軸;
(2)作出△ABC關于y軸對稱的△A′B′C′,并寫出點B′的坐標;
(3)點P是x軸上的動點,在圖中找出使△A′BP周長最小時的點P,直接寫出點P的坐標是: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,∠ABC=30°,動點P從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,運動時間為t秒(0≤t≤6),連接PQ,以PQ為直徑作⊙O.
(1)當t=1時,求△BPQ的面積;
(2)設⊙O的面積為y,求y與t的函數(shù)解析式;
(3)若⊙O與Rt△ABC的一條邊相切,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com