【題目】6如圖,在建立了平面直角坐標系的正方形網(wǎng)格中,A2,2,B1,0,C3,1

1畫出ΔABC關于x軸對稱的ΔA1B1C1

2畫出將ΔABC繞點B逆時針旋轉(zhuǎn)900,所得的ΔA2B2C2

3直接寫出A2點的坐標.

【答案】1作圖見試題解析;2作圖見試題解析;3)(-1,1.

【解析】

試題根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關于x軸的對稱點A1、B1、C1的位置,然后順次連接即可;

根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞點B按照逆時針旋轉(zhuǎn)90°后的對應點A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出A2點的坐標.

試題解析:如圖所示,A1B1C1即為ABC關于x軸對稱的圖形;

如圖所示,A2B2C2即為ABC繞原點B按逆時針旋轉(zhuǎn)90°的三角形,

A2點的坐標是-1,1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A是半徑為6cm的⊙O上的定點,動點PA出發(fā),以πcm/s的速度沿圓周按順時針方向運動,當點P回到A時立即停止運動.設點P運動時間為t(s);

(1)當t=6s時,∠POA的度數(shù)是________;

(2)當t為多少時,∠POA=120°;

(3)如果點BOA延長線上的一點,且AB=AO,問t為多少時,POB為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB6,BC8,點EBC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校團委舉辦了一次中國夢我的夢演講比賽滿分10分,學生得分均為整數(shù),成績達6分以上(含6分)為合格,達到9分以上(含9分)為優(yōu)秀.如圖所示是這次競賽中甲、乙兩組學生成績分布的條形統(tǒng)計圖.

1)補充完成下列的成績統(tǒng)計分析表:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

6

3.41

90%

20%

7.1

1.69

80%

10%

2)小明同學說:這次競賽我得了7分,在我們小組中排名屬中游略偏上!觀察上表可知,小明是______組學生;(填

3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若四邊形、四邊形都是正方形,顯然圖中有,

當正方形旋轉(zhuǎn)到如圖的位置時,是否成立?若成立,請給出證明;若不成立,請說明理由;

當正方形旋轉(zhuǎn)到如圖的位置時,延長,交

求證:;

時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售一種商品,通過記錄,發(fā)現(xiàn)該商品從開始銷售至銷售的第x天結(jié)束時(x為整數(shù))的總銷量y(件)滿足二次函數(shù)關系,銷量情況記錄如下表:

x

0

1

2

3

y

0

58

112

162

(1)求yx之間的函數(shù)關系式(不需要寫自變量的取值范圍);

(2)求:銷售到第幾天結(jié)束時,該商品全部售完?

(3)若第m天的銷量為22件,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣45),(﹣1,3).

1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系,標注原點以及x軸、y軸;

2)作出△ABC關于y軸對稱的△ABC′,并寫出點B′的坐標;

3)點Px軸上的動點,在圖中找出使△ABP周長最小時的點P,直接寫出點P的坐標是:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB切O于A、B兩點,CD切O于點E,交PA,PB于C、D,若O的半徑為r,PCD的周長等于3r,則tanAPB的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6cm,ABC=30°,動點P從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,運動時間為t秒(0≤t≤6),連接PQ,以PQ為直徑作⊙O.

(1)當t=1時,求BPQ的面積;

(2)設⊙O的面積為y,求yt的函數(shù)解析式;

(3)若⊙ORtABC的一條邊相切,求t的值.

查看答案和解析>>

同步練習冊答案