【題目】如圖:在平面直角坐標系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度,△ABC的頂點均在格點上,三個頂點的坐標分別是A(-34),B(-21),C(-42).

(1)將△ABC先向右平移7個單位長度,再向上平移2個單位長度,畫出第二次平移后的△;

(2)以點O(0,0)為對稱中心,畫出與△ABC成中心對稱的△

(3)將點B繞坐標原點逆時針方向旋轉(zhuǎn)90°至點,則點的坐標為(______,______)

【答案】(1)圖形見解析;(2)圖形見解析;(3)點B3見解析,B3的坐標為:(-1,-2).

【解析】

(1) 1)根據(jù)△ABC先向右平移7個單位長度,再向上平移2個單位長度,得出對應點坐標進而得出答案;
2)根據(jù)△ABC關于原點O對稱的△A2B2C2,得出對應點坐標進而得出答案;

3)根據(jù)點B繞坐標原點逆時針旋轉(zhuǎn)90°后所得的圖形B3,得出對應點坐標進而得出答案.

解:(1)如圖所示:△A1B1C1為所求;
2)如圖所示:△A2B2C2為所求;

3)如圖所示:點 B3即為所求,B3的坐標為:(-1,-2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一根彈簧的長度為10厘米,當彈簧受到千克的拉力時(不超過10),彈簧的長度是(厘米),測得有關數(shù)據(jù)如下表所示:

拉力(千克)

1

2

3

4

彈簧的長度(厘米)

1)寫出彈簧長度(厘米)關于拉力(千克)的函數(shù)解析式;

2)如果拉力是10千克,那么彈簧長度是多少厘米?

3)當拉力是多少時,彈簧長度是14厘米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,兩地相距,甲騎自行車,乙騎摩托車沿一條筆直的公路由地勻速行駛到地.設行駛時間為,甲、乙離開地的路程分別記為,它們與的關系如圖所示.

1)分別求出線段,所在直線的函數(shù)表達式.

2)試求點的坐標,并說明其實際意義.

3)乙在行駛過程中,求兩人距離超過的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,AB=AC=8BO=AB,點MBC邊上一動點,將線段OM繞點O按逆時針方向旋轉(zhuǎn)90°ON,連接ANCN,則△CAN周長的最小值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ACB90°,ACBC,直線MN經(jīng)過點C,且ADMND,BEMNE.

1)當直線MN繞點C旋轉(zhuǎn)到圖1的位置時,△ADC和△CEB全等嗎?請說明理由.

2)聰明的小亮發(fā)現(xiàn),當直線MN繞點C旋轉(zhuǎn)到圖1的位置時,可得DEADBE,請你說明其中的理由。

3)小亮將直線MN繞點C旋轉(zhuǎn)到圖2的位置,線段DE、AD、BE之間存在著什么的數(shù)量關系,請寫出這一關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開設武術、舞蹈、剪紙等三項活動課程以提升學生的體藝素養(yǎng),隨機抽取了部分學生對這三項活動的興趣情況進行了調(diào)查(每人從中只能選一項),并將調(diào)查結果繪制成如圖兩幅統(tǒng)計圖,請你結合圖中信息解答問題.

1)將條形統(tǒng)計圖補充完整;

2)本次抽樣調(diào)查的樣本容量是 ;

3)已知該校有1200名學生,請你根據(jù)樣本估計全校學生中喜歡剪紙的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3 cm得到△DEF.若△ABC的周長為14 cm,則四邊形ABFD的周長為(

A. 20 cmB. 17 cm

C. 14 cmD. 23 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線y1與直線y2的圖象交于A、B兩點.已知點A的坐標為(4,1),點Pa,b)是雙曲線y1上的任意一點,且0a4

1)分別求出y1、y2的函數(shù)表達式;

2)連接PAPB,得到△PAB,若4ab,求三角形ABP的面積;

3)當點P在雙曲線y1上運動時,設PBx軸于點E,延長PAx軸于點F,判斷PEPF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點左側,B點的坐標為(4,0),與y軸交于C(0,﹣4)點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數(shù)的表達式.

(2)連接PO、PC,并把POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.

(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

同步練習冊答案