【題目】將平行四邊形紙片按如圖方式折疊,使點(diǎn)與重合,點(diǎn) 落到處,折痕為.
(1)求證:;
(2)連結(jié),判斷四邊形是什么特殊四邊形?證明你的結(jié)論.
【答案】(1)證明見解析;(2)四邊形AECF是菱形.證明見解析.
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)及折疊的性質(zhì)我們可以得到∠B=∠D′,AB=AD′,∠1=∠3,從而利用ASA判定△ABE≌△AD′F;
(2)四邊形AECF是菱形,我們可以運(yùn)用菱形的判定,有一組鄰邊相等的平行四邊形是菱形來進(jìn)行驗(yàn)證.
試題解析:(1)由折疊可知:∠D=∠D′,CD=AD′,
∠C=∠D′AE.
∵四邊形ABCD是平行四邊形,
∴∠B=∠D,AB=CD,∠C=∠BAD.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,
即∠1+∠2=∠2+∠3.
∴∠1=∠3.
在△ABE和△AD′F中
∵
∴△ABE≌△AD′F(ASA).
(2)四邊形AECF是菱形.
證明:由折疊可知:AE=EC,∠4=∠5.
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠5=∠6.
∴∠4=∠6.
∴AF=AE.
∵AE=EC,
∴AF=EC.
又∵AF∥EC,
∴四邊形AECF是平行四邊形.
又∵AF=AE,
∴平行四邊形AECF是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與、軸交于、、三點(diǎn),其中,拋物線的頂點(diǎn)為.
(1)求的值及頂點(diǎn)的坐標(biāo);
(2)如圖1,若動點(diǎn)在第一象限內(nèi)的拋物線上,動點(diǎn)在對稱軸上,當(dāng),且時(shí),求此時(shí)點(diǎn)的坐標(biāo);
(3)如圖2,若點(diǎn)是二次函數(shù)圖像上對稱軸右側(cè)一點(diǎn),設(shè)點(diǎn)到直線的距離為,到拋物線的對稱軸的距離為,當(dāng)時(shí),請求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,過點(diǎn)B作BD⊥AC于點(diǎn)D,BE平分∠ABD交AC于點(diǎn)E.
(1)求證:CB=CE;
(2)若∠CEB=80°,求∠DBC的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),,點(diǎn)在以為圓心,為半徑的⊙上,是的中點(diǎn),若長的最大值為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)是( )
①為了了解一批燈泡的使用壽命,應(yīng)采用全面調(diào)查的方式
②一組數(shù)據(jù)5,6,7,6, 8,10的眾數(shù)和中位數(shù)都是6
③已知關(guān)于x的一元二次方程(x+1)2﹣m=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍是m≥0
④式子有意義的條件是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳天虹某商場從廠家批發(fā)電視機(jī)進(jìn)行零售,批發(fā)價(jià)格與零售價(jià)格如下表:
電視機(jī)型號 | 甲 | 乙 |
批發(fā)價(jià)(元/臺) | 1500 | 2500 |
零售價(jià)(元/臺) | 2025 | 3640 |
若商場購進(jìn)甲、乙兩種型號的電視機(jī)共50臺,用去9萬元.
(1)求商場購進(jìn)甲、乙型號的電視機(jī)各多少臺?
(2)迎“元旦”商場決定進(jìn)行優(yōu)惠促銷:以零售價(jià)的七五折銷售乙種型號電視機(jī),兩種電視機(jī)銷售完畢,商場共獲利8.5%,求甲種型號電視機(jī)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2=的圖象交于A、B兩點(diǎn),已知當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2.
(1)求一次函數(shù)的函數(shù)表達(dá)式;
(2)已知反比例函數(shù)在第一象限的圖象上有一點(diǎn)C到x軸的距離為2,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(diǎn)(不與端點(diǎn)重合),作,分別交、圓周于、,連接,已知.
(1)求證:為⊙的切線;
(2)已知,填空:
①當(dāng)__________時(shí),四邊形是菱形;
②若,當(dāng)__________時(shí),為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com