【題目】如圖,將ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α得到DBE,DE的延長線與AC相交于點(diǎn)F,連接DA、BF,ABC=α=60°,BF=AF

1求證:DABC;

2猜想線段DF、AF的數(shù)量關(guān)系,并證明你的猜想

【答案】1證明見解析;2猜想:DF=2AF,證明見解析

【解析】

試題1利用等邊三角形的判定與性質(zhì)得出DAB=ABC,進(jìn)而得出答案;

2首先利用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定方法得出DBG≌△ABFSAS,進(jìn)而得出BGF為等邊三角形,求出DF=DG+FG=AF+AF=2AF

試題解析:1由旋轉(zhuǎn)的性質(zhì)可知:DBE=ABC=60°,BD=AB,

∴△ABD為等邊三角形,

∴∠DAB=60°,

∴∠DAB=ABC,

DABC;

2猜想:DF=2AF,

證明如下:如圖,在DF上截取DG=AF,連接BG,

由旋轉(zhuǎn)的性質(zhì)可知,DB=AB,BDG=BAF,

DBG和ABF中,

,

∴△DBG≌△ABFSAS,

BG=BF,DBG=ABF,

∵∠DBG+GBE=α=60°,

∴∠GBE+ABF=60°,即GBF=α=60°,

BG=BF,

∴△BGF為等邊三角形,

GF=BF,

BF=AF,

FG=AF,

DF=DG+FG=AF+AF=2AF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點(diǎn) A,一次函數(shù) y=kx+b 的圖象經(jīng)過點(diǎn) B0,﹣1),與x 以及 y=x+1 的圖象分別交于點(diǎn) C、D,且點(diǎn) D 的坐標(biāo)為1,n),

1n= ,k= ,b= ;

2函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值,則X的取值范圍是 ;

3求四邊形 AOCD 的面積;

4 x軸上是否存在點(diǎn) P,使得以點(diǎn) P,C,D 為頂點(diǎn)的三角形是直角三角形?若存在求出點(diǎn) P 的坐標(biāo); 若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B在一直線上,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),4秒后走到點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長為AD,繼續(xù)沿AB方向以同樣的速度勻速前進(jìn)4秒后到點(diǎn)F,此時(shí)他(EF)的影長為2米,然后他再沿AB方向以同樣的速度勻速前進(jìn)2秒后達(dá)點(diǎn)H,此時(shí)他(GH)處于燈光正下方.

(1)請?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時(shí)在這個(gè)燈光下的影長FM(不寫畫法);

(2)求小明沿AB方向勻速前進(jìn)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖:點(diǎn)(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對角線BD的中點(diǎn),函數(shù)y=(x>0)的圖象又經(jīng)過A、E兩點(diǎn),點(diǎn)E的橫坐標(biāo)為m,解答下列問題:

(1)k的值;

(2)求點(diǎn)A的坐標(biāo);(用含m代數(shù)式表示)

(3)當(dāng)∠ABD=45°時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點(diǎn)OOFBCF,若BD=8cm,AE=2cm,則OF的長度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形邊在軸上,邊在軸上.把沿折疊得到,交于點(diǎn)

1)如圖1,求證:

2)如圖1,若,.寫出所在直線的解析式.

3)如圖2,在(2)的條件下,中點(diǎn),是直線上一動點(diǎn),是否有最小值,若有請求出最小值,若沒有請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,將點(diǎn)A翻折到對角線BD上的點(diǎn)M處,折痕BEAD于點(diǎn)E.將點(diǎn)C翻折到對角線BD上的點(diǎn)N處,折痕DFBC于點(diǎn)F

1)求證:四邊形BFDE為平行四邊形;

2)若四邊形BFDE為菱形,且AB2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出A1的坐標(biāo).

(2)畫出ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標(biāo).

(3)畫出A2B2C2關(guān)于原點(diǎn)O成中心對稱的A3B3C3,并寫出A3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)DE分別在邊BC,AC上,DEAB,過點(diǎn)EEFDE,交BC的延長線于點(diǎn)F

1)求∠F的度數(shù);

2)若CD4,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案