【題目】如圖,將△ABC繞點B逆時針旋轉α得到△DBE,DE的延長線與AC相交于點F,連接DA、BF,∠ABC=α=60°,BF=AF.
(1)求證:DA∥BC;
(2)猜想線段DF、AF的數量關系,并證明你的猜想.
【答案】(1)證明見解析;(2)猜想:DF=2AF,證明見解析.
【解析】
試題(1)利用等邊三角形的判定與性質得出∠DAB=∠ABC,進而得出答案;
(2)首先利用旋轉的性質以及全等三角形的判定方法得出△DBG≌△ABF(SAS),進而得出△BGF為等邊三角形,求出DF=DG+FG=AF+AF=2AF.
試題解析:(1)由旋轉的性質可知:∠DBE=∠ABC=60°,BD=AB,
∴△ABD為等邊三角形,
∴∠DAB=60°,
∴∠DAB=∠ABC,
∴DA∥BC;
(2)猜想:DF=2AF,
證明如下:如圖,在DF上截取DG=AF,連接BG,
由旋轉的性質可知,DB=AB,∠BDG=∠BAF,
在△DBG和△ABF中,
,
∴△DBG≌△ABF(SAS),
∴BG=BF,∠DBG=∠ABF,
∵∠DBG+∠GBE=α=60°,
∴∠GBE+∠ABF=60°,即∠GBF=α=60°,
又∵BG=BF,
∴△BGF為等邊三角形,
∴GF=BF,
又∵BF=AF,
∴FG=AF,
∴DF=DG+FG=AF+AF=2AF.
科目:初中數學 來源: 題型:
【題目】如圖,已知函數 y=x+1 的圖象與 y 軸交于點 A,一次函數 y=kx+b 的圖象經過點 B(0,﹣1),與x 軸 以及 y=x+1 的圖象分別交于點 C、D,且點 D 的坐標為(1,n),
(1)則n= ,k= ,b= ;
(2)函數 y=kx+b 的函數值大于函數 y=x+1 的函數值,則X的取值范圍是 ;
(3)求四邊形 AOCD 的面積;
(4)在 x軸上是否存在點 P,使得以點 P,C,D 為頂點的三角形是直角三角形?若存在求出點 P 的坐標; 若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B在一直線上,小明從點A出發(fā)沿AB方向勻速前進,4秒后走到點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)沿AB方向以同樣的速度勻速前進4秒后到點F,此時他(EF)的影長為2米,然后他再沿AB方向以同樣的速度勻速前進2秒后達點H,此時他(GH)處于燈光正下方.
(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);
(2)求小明沿AB方向勻速前進的速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖:點(1,3)在函數y=(x>0)的圖象上,矩形ABCD的邊BC在x軸上,E是對角線BD的中點,函數y=(x>0)的圖象又經過A、E兩點,點E的橫坐標為m,解答下列問題:
(1)求k的值;
(2)求點A的坐標;(用含m代數式表示)
(3)當∠ABD=45°時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形的邊在軸上,邊在軸上.把沿折疊得到,與交于點.
(1)如圖1,求證:.
(2)如圖1,若,.寫出所在直線的解析式.
(3)如圖2,在(2)的條件下,是中點,是直線上一動點,是否有最小值,若有請求出最小值,若沒有請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,將點A翻折到對角線BD上的點M處,折痕BE交AD于點E.將點C翻折到對角線BD上的點N處,折痕DF交BC于點F.
(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:
(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出A1的坐標.
(2)畫出△ABC繞點B逆時針旋轉90°后得到的△A2B2C2,并寫出A2的坐標.
(3)畫出△A2B2C2關于原點O成中心對稱的△A3B3C3,并寫出A3的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數;
(2)若CD=4,求EF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com