【題目】如圖,在⊙O中,AB為直徑,AC為弦.過(guò)BC延長(zhǎng)線上一點(diǎn)G,作GD⊥AO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,M是GE的中點(diǎn),連接CF,CM.
(1)判斷CM與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長(zhǎng).
【答案】(1)CM與⊙O相切,理由見(jiàn)解析;(2)MF=.
【解析】
(1)連接OC,如圖,利用圓周角定理得到∠ACB=90°,再根據(jù)斜邊上的中線性質(zhì)得MC=MG=ME,所以∠G=∠1,接著證明∠1+∠2=90°,從而得到∠OCM=90°,然后根據(jù)直線與圓的位置關(guān)系的判斷方法可判斷CM為⊙O的切線;
(2)先證明∠G=∠A,再證明∠EMC=∠4,則可判定△EFC∽△ECM,利用相似比先計(jì)算出CE,再計(jì)算出EF,然后計(jì)算ME-EF即可.
解:(1)CM與⊙O相切.理由如下:
連接OC,如圖,
∵GD⊥AO于點(diǎn)D,
∴∠G+∠GBD=90°,
∵AB為直徑,
∴∠ACB=90°,
∵M點(diǎn)為GE的中點(diǎn),
∴MC=MG=ME,
∴∠G=∠1,
∵OB=OC,
∴∠B=∠2,
∴∠1+∠2=90°,
∴∠OCM=90°,
∴OC⊥CM,
∴CM為⊙O的切線;
(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,
∴∠1=∠5,
而∠1=∠G,∠5=∠A,
∴∠G=∠A,
∵∠4=2∠A,
∴∠4=2∠G,
而∠EMC=∠G+∠1=2∠G,
∴∠EMC=∠4,
而∠FEC=∠CEM,
∴△EFC∽△ECM,
∴,即,
∴CE=4,EF=,
∴MF=ME﹣EF=6﹣=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“我為祖國(guó)點(diǎn)贊”征文活動(dòng)中,學(xué)校計(jì)劃對(duì)獲得一、二等獎(jiǎng)的學(xué)生分別獎(jiǎng)勵(lì)一支鋼筆,一本筆記本.已知購(gòu)買2支鋼筆和3個(gè)筆記本共38元,購(gòu)買4支鋼筆和5個(gè)筆記本共70元.
(1)鋼筆、筆記本的單價(jià)分別為多少元?
(2)經(jīng)與商家協(xié)商,購(gòu)買鋼筆超過(guò)30支時(shí),每增加一支,單價(jià)降低0.1元;超過(guò)50支,均按購(gòu)買50支的單價(jià)銷售.筆記本一律按原價(jià)銷售.學(xué)校計(jì)劃獎(jiǎng)勵(lì)一、二等獎(jiǎng)學(xué)生共計(jì)100人,其中一等獎(jiǎng)的人數(shù)不少于30人,且不超過(guò)60人,這次獎(jiǎng)勵(lì)一等學(xué)生多少人時(shí),購(gòu)買獎(jiǎng)品金額最少,最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點(diǎn)D是邊AB上的動(dòng)點(diǎn),將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點(diǎn)E.若△A'ED為直角三角形,則AD的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P坐標(biāo)為(1,),以OP為斜邊作等腰直角△OAP,直角頂點(diǎn)A在反比例函數(shù)y=的圖象上,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,4);點(diǎn)D的坐標(biāo)為(0,2),點(diǎn)P為二次函數(shù)圖象上的動(dòng)點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)點(diǎn)P位于第二象限內(nèi)二次函數(shù)的圖象上時(shí),連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設(shè)平行四邊形APED的面積為S,求S的最大值;
(3)在y軸上是否存在點(diǎn)F,使∠PDF與∠ADO互余?若存在,直接寫(xiě)出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在ABCD中,AE⊥BC于E,E恰為BC的中點(diǎn).tanB=2.
(1)求證:AD=AE;
(2)如圖2.點(diǎn)P在BE上,作EF⊥DP于點(diǎn)F,連結(jié)AF.線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?并說(shuō)明理由;
(3)請(qǐng)你在圖3中畫(huà)圖探究:當(dāng)P為射線EC,上任意一點(diǎn)(P不與點(diǎn)E重合)時(shí),作EF⊥DP于點(diǎn)F,連結(jié)AF,線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?請(qǐng)?jiān)趫D3中補(bǔ)全圖形,直接寫(xiě)出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式——利用函數(shù)圖象研究其性質(zhì)一一運(yùn)用函數(shù)解決問(wèn)題"的學(xué)習(xí)過(guò)程.在畫(huà)函數(shù)圖象時(shí),我們通過(guò)描點(diǎn)或平移的方法畫(huà)出了所學(xué)的函數(shù)圖象.同時(shí),我們也學(xué)習(xí)了絕對(duì)值的意義.結(jié)合上面經(jīng)歷的學(xué)習(xí)過(guò)程,現(xiàn)在來(lái)解決下面的問(wèn)題在函數(shù)中,當(dāng)時(shí),當(dāng)時(shí),
(1)求這個(gè)函數(shù)的表達(dá)式;
(2)在給出的平面直角坐標(biāo)系中,請(qǐng)用你喜歡的方法畫(huà)出這個(gè)函數(shù)的圖象井并寫(xiě)出這個(gè)函數(shù)的一條性質(zhì);
(3)已知函的圖象如圖所示,結(jié)合你所畫(huà)的函數(shù)圖象,直接寫(xiě)出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點(diǎn)A,過(guò)點(diǎn)作AO的平行線交雙曲線于點(diǎn)B,連接AB并延長(zhǎng)與y軸交于點(diǎn),則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-2ax-3a(a≠0)頂點(diǎn)為P,且該拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).我們規(guī)定:拋物線與x軸圍成的封閉區(qū)域稱為“G區(qū)域”(不包含邊界);橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為整點(diǎn).
(1)求拋物線y=ax2-2ax-3a頂點(diǎn)P的坐標(biāo)(用含a的代數(shù)式表示);
(2)如果拋物線y=ax2-3ax-3a經(jīng)過(guò)(1,3).
①求a的值;
②在①的條件下,直接寫(xiě)出“G區(qū)域”內(nèi)整點(diǎn)的個(gè)數(shù).
(3)如果拋物線y=ax2-2ax-3a在“G區(qū)域”內(nèi)有4個(gè)整點(diǎn),直接寫(xiě)出a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com