【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數量關系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數.
【答案】(1)證明見解析;
(2)∠AED+∠D=180°,理由見解析;
(3)∠AEM=130°
【解析】分析:(1)根據同位角相等兩直線平行,可證CE∥GF;
(2)根據平行線的性質可得∠C=∠FGD,根據等量關系可得∠FGD=∠EFG,根據內錯角相等,兩直線平行可得AB∥CD,再根據平行線的性質可得∠AED與∠D之間的數量關系;(3)根據對頂角相等可求∠DHG,根據三角形外角的性質可求∠CGF,根據平行線的性質可得∠C,∠AEC,再根據平角的定義可求∠AEM的度數.
本題解析:(1)證明:∵∠CED=∠GHD, ∴CE∥GF
(2)答:∠AED+∠D=180°
理由:∵CE∥GF,
∴∠C=∠FGD,
∵∠C=∠EFG,
∴∠FGD=∠EFG,
∴AB∥CD, ∴∠AED+∠D=180°;
(3)∵∠DHG=∠EHF=100°,∠D=30°,
∴∠CGF=100°+30°=130°
∵CE∥GF,∴∠C=180°﹣130°=50°
∵AB∥CD,
∴∠AEC=50°,
∴∠AEM=180°﹣50°=130°.
科目:初中數學 來源: 題型:
【題目】已知關于a,b的多項式2(a2-2ab-b2)-(a2+mab+2b2).
(1)若合并后不含有ab項,求m的值;
(2)在(1)的條件下,當a=-3,b=時,求代數式的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿射線AB的方向平移2個單位到△DEF的位置,點A、B、C的對應點分別點D、E、F.
(1)直接寫出圖中與AD相等的線段.
(2)若AB=3,則AE=______.
(3)若∠ABC=75°,求∠CFE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將1,2,3,……,100這100個自然數,任意分為50組,每組兩個數,現將每組的兩個數中任一數值記作a,另一個記作b,代入代數式中進行計算,求出其結果,50組數代入后可求得50個值,則這50個值的和的最大值是___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象如圖所示,以下結論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為( ,﹣2);⑤當x< 時,y隨x的增大而減;⑥a+b+c>0正確的有( )
A.3個
B.4個
C.5個
D.6個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,
(1)求DE的長;
(2)過點EF作EF⊥CE,交AB于點F,求BF的長;
(3)過點E作EG⊥CE,交CD于點G,求DG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=6,將△ABC繞點C按逆時針方向旋轉得到△A1B1C,使CB1∥AD,分別延長AB、CA1相交于點D,則線段BD的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
一般地,當α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)= .
例如:tan15°=tan(45°﹣30°)= = =
= = =2﹣ .
根據以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實心石塔(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂的仰角為75°,小華的眼睛離地面的距離DC為1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數據 ≈1.732, ≈1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°.公路PQ上A處距O點240米.如果火車行駛時,周圍200米以內會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,A處受噪音影響的時間為( 。
A. 12秒 B. 16秒 C. 20秒 D. 30秒.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com