【題目】已知某商品的進(jìn)價(jià)為每件40元.現(xiàn)在的售價(jià)是每件60元.每星期可賣(mài)出300件.市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)一元.每星期要少賣(mài)出10件;每降價(jià)一元,每星期可多賣(mài)出18件.如何定價(jià)才能使利潤(rùn)最大?
【答案】答:定價(jià)為65元時(shí)可獲得最大利潤(rùn),最大利潤(rùn)為6250元.
【解析】
設(shè)每星期所獲利潤(rùn)為y,然后討論:若每件漲價(jià)x元或每件降價(jià)x元,根據(jù)一星期利潤(rùn)等于每件的利潤(rùn)×銷(xiāo)售量分別得到y=(60-40+x)(300-10x)或y=(60-40-x)(300+18x),然后把他們配成拋物線頂點(diǎn)式,利用拋物線的最值問(wèn)題即可得出答案.
解:設(shè)每漲價(jià)x元,獲得的總利潤(rùn)為y元
y=(60-40+x)(300-10x)
=(20+x)(300-10x)
=-10x2+100x+6000
=-10(x-5)2+6250(0≤x≤30)
當(dāng)x=5時(shí),y的值最大,最大值為6250,此時(shí)定價(jià)為:60+5=65(元);
設(shè)每漲價(jià)x元,獲得的總利潤(rùn)為元
=(20-x)(300+18x)
=-18x2+60x+6000
=-18(0≤x≤20)
當(dāng)x=時(shí),的值最大,最大值為6050,此時(shí)定價(jià)為:(元)
綜上所述,定價(jià)為65元時(shí)可獲得最大利潤(rùn),最大利潤(rùn)為6250元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23日為世界閱讀日,為響應(yīng)黨中央“倡導(dǎo)全民閱讀,建設(shè)書(shū)香會(huì)”的號(hào)召,某校團(tuán)委組織了一次全校學(xué)生參加的“讀書(shū)活動(dòng)”大賽為了解本次賽的成績(jī),校團(tuán)委隨機(jī)抽取了部分學(xué)生的成績(jī)(成績(jī)取整數(shù),總分100分)作為本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表(頻數(shù)頻率分布表和頻數(shù)分布直方圖):
成績(jī)(分) | 頻數(shù)(人) | 頻率 |
10 | 0.05 | |
30 | 0.15 | |
40 | ||
0.35 | ||
50 | 0.25 |
根據(jù)所給信息,解答下列問(wèn)題:
(1)抽取的樣本容量是 ; , ;
(2)補(bǔ)全頻數(shù)分布直方圖;這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(3)全校有1200名學(xué)生參加比賽,若得分為90分及以上為優(yōu)秀,請(qǐng)你估計(jì)全校參加比賽成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了測(cè)量休閑涼亭AB的高度,某數(shù)學(xué)興趣小組在水平地面D處豎直放置一個(gè)標(biāo)桿CD,并在地面上水平放置一個(gè)平面鏡E,使得B、E、D在同一水平線上,如圖所示.該小組在標(biāo)桿的F處通過(guò)平面鏡E恰好觀測(cè)到?jīng)鐾ろ敹?/span>A,在F處測(cè)得涼亭A頂端的仰角為30°,平面鏡E的俯角為45°,FD=2米,求休閑涼亭AB的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB為邊,在△OAB
外作等邊△OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線和,直線與雙曲線交于點(diǎn),將直線向下平移與雙曲線交于點(diǎn),與軸交于點(diǎn),與雙曲線交于點(diǎn),,,,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“蛟龍”號(hào)深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米處作業(yè)(如圖),測(cè)得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點(diǎn),此時(shí)測(cè)得海底沉船C的俯角為60°.請(qǐng)判斷沉船C是否在“蛟龍”號(hào)深潛極限范圍內(nèi)?并說(shuō)明理由;(精確到0.01)(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E是BC的中點(diǎn),AE與BD交于點(diǎn)P,F是CD上的一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,N,且AF⊥DE,連接PN,則下列結(jié)論中:
①;②;③tan∠EAF=;④正確的是()
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過(guò)點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人同時(shí)各接受了300個(gè)零件的加工任務(wù),甲比乙每小時(shí)加工的數(shù)量多,兩人同時(shí)開(kāi)工,其中一人因機(jī)器故障停止加工若干小時(shí)后又繼續(xù)按原速加工,直到他們完成任務(wù)。如圖表示甲比乙多加工的零件數(shù)量y(個(gè))與加工時(shí)間x(小時(shí))之間的函數(shù)關(guān)系,觀察圖象解決下列問(wèn)題:
(1)其中一人因故障,停止加工_________小時(shí),C點(diǎn)表示的實(shí)際意義是________________.甲每小時(shí)加工的零件數(shù)量為_____________個(gè);
(2)求線段BC對(duì)應(yīng)的函數(shù)關(guān)系式和D點(diǎn)坐標(biāo);
(3)乙在加工的過(guò)程中,多少小時(shí)時(shí)比甲少加工75個(gè)零件?
(4)為了使乙能與甲同時(shí)完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每小時(shí)能加工80個(gè)零件,并把丙加工的零件數(shù)記在乙的名下,問(wèn)丙應(yīng)在第多少小時(shí)時(shí)開(kāi)始幫助乙?并在圖中用虛線畫(huà)出丙幫助后y與x之間的函數(shù)關(guān)系的圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com