【題目】為推廣陽(yáng)光體育“大課間”活動(dòng),我市某中學(xué)決定在學(xué)生中開(kāi)設(shè)A:實(shí)心球.B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
【答案】(1)在這項(xiàng)調(diào)查中,共調(diào)查了150名學(xué)生;
(2)本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)是45人,所占百分比是30%,圖形見(jiàn)解析;
(3)剛好抽到同性別學(xué)生的概率是.
【解析】
試題(1)用A的人數(shù)除以所占的百分比,即可求出調(diào)查的學(xué)生數(shù);
(2)用抽查的總?cè)藬?shù)減去A、C、D的人數(shù),求出喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù),再除以被調(diào)查的學(xué)生數(shù),求出所占的百分比,再畫(huà)圖即可;
(3)用A表示男生,B表示女生,畫(huà)出樹(shù)形圖,再根據(jù)概率公式進(jìn)行計(jì)算即可.
試題解析:(1)根據(jù)題意得:
15÷10%=150(名).
答:在這項(xiàng)調(diào)查中,共調(diào)查了150名學(xué)生;
(2)本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)是;150﹣15﹣60﹣30=45(人),
所占百分比是:×100%=30%,
畫(huà)圖如下:
(3)用A表示男生,B表示女生,畫(huà)圖如下:
共有20種情況,同性別學(xué)生的情況是8種,
則剛好抽到同性別學(xué)生的概率是=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠疫情爆發(fā)后,各地啟動(dòng)了抗擊新冠肺炎的一級(jí)應(yīng)急響應(yīng)機(jī)制,某社區(qū)20位90后積極參與社區(qū)志愿者工作,充分展示了新時(shí)代青年的責(zé)任擔(dān)當(dāng),這20位志愿者的年齡統(tǒng)計(jì)如表,則他們年齡的眾數(shù)和中位數(shù)分別是( )
A.25歲,25歲B.25歲,26歲C.26歲,25歲D.26歲,26歲
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】保護(hù)環(huán)境衛(wèi)生,垃圾分類(lèi)開(kāi)始實(shí)施.我市為了促進(jìn)生活垃圾的分類(lèi)處理,將生活垃圾分為“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”四類(lèi),并且設(shè)置了相應(yīng)的垃圾箱.
(1)小亮將媽媽分類(lèi)好的某類(lèi)垃圾隨機(jī)投入到四種垃圾箱某類(lèi)箱內(nèi),請(qǐng)寫(xiě)出小亮投放正確的概率為 ;
(2)經(jīng)過(guò)媽媽的教育,小明已經(jīng)分清了“有害垃圾”,但仍然分不清“可回收物”、“濕垃圾”和“干垃圾”,這天小亮要將媽媽分類(lèi)好的四類(lèi)垃圾投入到四種垃圾箱內(nèi),請(qǐng)求出小明投放正確的概率;
(3)請(qǐng)你就小亮投放垃圾的事件提出兩條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過(guò)點(diǎn)A作∠DAF=∠DAB,過(guò)點(diǎn)D作AF的垂線,垂足為F,交AB的延長(zhǎng)線于點(diǎn)P,連接CO并延長(zhǎng)交⊙O于點(diǎn)G,連接EG,已知DE=4,AE=8.
(1)求證:DF是⊙O的切線;
(2)求證:OC2=OEOP;
(3)求線段EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016江蘇省鎮(zhèn)江市) (2016鎮(zhèn)江)如圖1,一次函數(shù)y=kx﹣3(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)(x>0)的圖象交于點(diǎn)B(4,b).
(1)b= ;k= ;
(2)點(diǎn)C是線段AB上的動(dòng)點(diǎn)(于點(diǎn)A、B不重合),過(guò)點(diǎn)C且平行于y軸的直線l交這個(gè)反比例函數(shù)的圖象于點(diǎn)D,求△OCD面積的最大值;
(3)將(2)中面積取得最大值的△OCD沿射線AB方向平移一定的距離,得到△O′C′D′,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′落在該反比例函數(shù)圖象上(如圖2),則點(diǎn)D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點(diǎn)C,連接OF,若∠AOF=40°,則∠F的度數(shù)是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如圖1,在中,,點(diǎn)是射線上任意一點(diǎn),是等邊三角形,且點(diǎn)在的內(nèi)部,連接.探究線段與之間的數(shù)量關(guān)系.
請(qǐng)你完成下列探究過(guò)程:
先將圖形特殊化,得出猜想,再對(duì)一般情況進(jìn)行分析并加以證明.
當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖2),請(qǐng)你補(bǔ)全圖形.由的度數(shù)為_______________,點(diǎn)落在_______________,容易得出與之間的數(shù)量關(guān)系為_______________
當(dāng)是的平分線時(shí),判斷與之間的數(shù)量關(guān)系并證明
當(dāng)點(diǎn)在如圖3的位置時(shí),請(qǐng)你畫(huà)出圖形,研究三點(diǎn)是否在以為圓心的同一個(gè)圓上,寫(xiě)出你的猜想并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)為的拋物線與交軸分別于點(diǎn),(點(diǎn)在點(diǎn)的左側(cè)),與交軸交于點(diǎn).已知直線的解析式為.
(1)求拋物線的解析式:
(2)若以點(diǎn)為圓心的圓與相切,求的半徑;
(3)在軸上是否存在一點(diǎn),使得以,,三點(diǎn)為頂點(diǎn)的三角形與相似?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知在四邊形ABCD中,,,,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線B→A→D→C的方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),整個(gè)運(yùn)動(dòng)過(guò)程中,△BCP的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)關(guān)系如圖2所示,則AD的長(zhǎng)為( )
A.5B.C.8D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com