【題目】已知為等邊三角形,為的高,延長至,使,連接,則__________,__________。
【答案】3, 120°
【解析】
根據(jù)等腰三角形和三角形外角性質(zhì)求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.
∵△ABC為等邊三角形,
∴∠ABC=∠ACB=60°,AB=BC,∠DCE=120°,
∵BD為高線,
∴∠BDC=90°,∠DBC=∠ABC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∵∠DCE=120°,
∴∠CDE=180°120°30°=30°,
∴∠BDE=∠BDC+∠CDE=120°,
∵BD是等邊三角形ABC的高,CD=1,
∴BC=AC=2CD=2,
∴BE=BC+CE=3,
故答案為:BE=3,∠BDE=120°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y═﹣x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B的坐標為(3,0),點C的坐標為(0,5).有一寬度為1,長度足夠長的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和點Q,交直線AC于點M和點N,交x軸于點E和點F.
(1)求拋物線的解析式及點A的坐標;
(2)當點M和N都在線段AC上時,連接MF,如果sin∠AMF=,求點Q的坐標;
(3)在矩形的平移過程中,是否存在以點P,Q,M,N為頂點的四邊形是平行四邊形,若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)請直接寫出不等式kx+b>3x中x的范圍.
(3)若點D在y軸上,且滿足S△BCD=2S△BOC,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y﹣3與3x+2正比例,且x=2時,y=5
(1)求y與x之間的函數(shù)關(guān)系式,并指出它是什么函數(shù);
(2)點(4,6)是否在這個函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察表格,然后回答問題:
(1)表格中x= ;y= .
(2)從表格中探究a與數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:
①已知≈3.16,則≈ ;
②已知=8.973,若=897.3,用含m的代數(shù)式表示b,則b= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市教研室的數(shù)學調(diào)研小組對老師在講評試卷中學生參與的深度與廣度進行評調(diào)查,其評價項目為“主動質(zhì)疑”、“獨立思考”、“專注聽講”、“講解題目”四項,該調(diào)研小組隨機抽取了若干名初中九年級學生的參與情況,繪制成如圖所示的頻數(shù).
分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題
(1)在這次評價中,一共抽查了 名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請將頻數(shù)分布直方圖補充完整;
(4)如果全市有60000名九年級學生,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA=6,點D是射線OM上的動點,當點D不與點A重合時,將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE,連接DE.
(1)如圖1,猜想:△CDE的形狀是 三角形.
(2)請證明(1)中的猜想
(3)設(shè)OD=m,
①當6<m<10時,△BDE的周長是否存在最小值?若存在,求出△BDE周長的最小值;若不存在,請說明理由.
②是否存在m的值,使△DEB是直角三角形,若存在,請直接寫出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長分別為, , ,求這個三角形的面積.小明同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長分別為, , ,請在圖2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠ECF=∠BCD=90°,CE=CF=5,BC=7,BD平分∠ABC,E是△BCD內(nèi)一點,F是四邊形ABCD外一點.(E可以在△BCD的邊上)
(1)求證:DC=BC;
(2)當∠BEC=135°,設(shè)BE=a,DE=b,求a與b滿足的關(guān)系式;
(3)當E落在線段BD上時,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com