【題目】已知點(diǎn)P1a , 3)與P2(5,-3)關(guān)于原點(diǎn)對(duì)稱,則a

【答案】-5
【解析】由點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)可得a=-5.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)(兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.

(1)求證:AD=AF;

(2)求證:BD=EF;

(3)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx22mx以下各點(diǎn)不可能成為二次函數(shù)頂點(diǎn)的是( 。

A. (﹣2,4 B. (﹣2,﹣4 C. (﹣1,﹣1 D. 1,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=100°,E,F(xiàn)分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC的度數(shù)為( 。

A. 50° B. 55° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省聊城市第19題)如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,5),B(2,1),C(1,3).

(1)若ABC經(jīng)過平移后得到A1B1C1,已知點(diǎn)C1的坐標(biāo)為(4,0),寫出頂點(diǎn)A1,B1的坐標(biāo);

(2)若ABC和A1B2C2關(guān)于原點(diǎn)O成中心對(duì)稱圖形,寫出A1B2C2的各頂點(diǎn)的坐標(biāo);

(3)將ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到A2B3C3,寫出A2B3C3的各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,OC是AOD的平分線,OE是BOD的平分線.

(1)若AOB=120°,則COE是多少度?

(2)若EOC=65°,DOC=25°,則BOE是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:

(1)請(qǐng)你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)

A: ___________ B: _____________ ;

(2)觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是:_____________ ;

(3)若將數(shù)軸折疊,使得A點(diǎn)與-3表示的點(diǎn)重合,則B點(diǎn)與數(shù)_ _表示的點(diǎn)重合;

(4)若數(shù)軸上M、N兩點(diǎn)之間的距離為1004(MN的左側(cè)),且M、N兩點(diǎn)經(jīng)過(3)中折疊后互相重合,則M、N兩點(diǎn)表示的數(shù)分別是: M: _______ N: _______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)A(﹣1,0),點(diǎn)B(0,﹣2),AD與y軸交于點(diǎn)E,且E為AD的中點(diǎn),雙曲線y=經(jīng)過C,D兩點(diǎn)且D(a,4)、C(2,b).

(1)求a、b、k的值;

(2)如圖2,線段CD能通過旋轉(zhuǎn)一定角度后點(diǎn)C、D的對(duì)應(yīng)點(diǎn)C′、D′還能落在y=的圖象上嗎?如果能,寫出你是如何旋轉(zhuǎn)的,如果不能,請(qǐng)說明理由;

(3)如圖3,點(diǎn)P在雙曲線y=上,點(diǎn)Q在y軸上,若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法把二次函數(shù)y=﹣x22x+4化為ya(xh)2+k的形式為______

查看答案和解析>>

同步練習(xí)冊(cè)答案