【題目】問題背景
在數(shù)學活動課上,張老師要求同學們拿兩張大小不同的矩形紙片進行旋轉變換探究活動.如圖 1,在矩形紙片ABCD 和矩形紙片EFGH中,AB=1,AD=2,且FE>AD,FG>AB,點E 是 AD 的中點,矩形紙片 EFGH 以點E 為旋轉中心進行逆時針旋轉,在旋轉過程中會產生怎樣的數(shù)量關系,提出恰當?shù)臄?shù)學問題并加以解決.
解決問題
下面是三個學習小組提出的數(shù)學問題,請你解決這些問題.
(1)“奮進”小組提出的問題是:如圖 1,當 EF 與 AB 相交于點 M,EH 與 BC 相交于點 N 時,求證:EM=EN.
(2)“雄鷹”小組提出的問題是:在(1)的條件下,當 AM=CN 時,AM 與 BM 有怎樣的數(shù)量關系,請說明理由.
(3)“創(chuàng)新”小組提出的問題是:若矩形 EFGH 繼續(xù)以點 E 為旋轉中心進行逆時針旋轉,當 時,請你在圖 2 中畫出旋轉后的示意圖,并求出此時 EF 將邊 BC 分成的兩條線段的長度.
【答案】(1)證明見解析;(2)AM=BN;(3)EF 將邊 BC 分成的兩條線段的長度為 .
【解析】試題分析:(1)過點 E 作 ,垂足為點P,根據(jù)已知條件證出PE=AE,再證得∠PEN=∠AEM,進而得到△PEN≌△AEM,即可證得結論;(2)易證PN=CN= PC,進而求出PN=CN=,再判斷出AM=PN=,即可得出BM=,從而證得結論;(3)在Rt△PEM中,求出PM的長,再用線段的和差即可得出結論.
試題解析:
(1) 如圖1,過點 E 作 ,垂足為點 P,
則四邊形 ABPE 是矩形,∴PE=AB=1, ,
∵ 點 E 是 AD 的中點,∴ ,∴PE=AE,
∵ ,∴ ,
∵PE=AE, ,∴,∴EM=EN.
(2) 由(1)知, ,∴AM=PN,
∵AM=CN,∴PN=CN=PC,
∵ 四邊形 EPCD 是矩形,∴PC=DE=1,PN=CN=,
∴AM=PN=,BM=AB-AM=,∴AM=BN.
(3)如圖2,當∠AEF=60°時,
設EF與BC交于M,EH與CD交于N,過點E作EP⊥BC于P,連接EC,
由(1)知,CP=EP=1,AD∥BC,
∴∠EMP=∠AEF=60°,
在Rt△PEM中,PM=,
∴BM=BP﹣PM=1﹣,CM=PC+PM=1+,
∴EF將邊BC分成的兩條線段的長度為1﹣,1+.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2(a≠0)的圖象與x 軸交于A,B 兩點,與y 軸交于點C,已知點 A(-4,0),B(1,0).
(1)求拋物線的解析式;
(2)若點 D(m,n) 是拋物線在第二象限的部分上的一動點,四邊形 的面積為 ,求 關于 m 的函數(shù)關系;
(3)若點 E 為拋物線對稱軸上任意一點,當以 A,C,E 為頂點的三角形是直角三角形時,請求出滿足條件的所有點 E 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】徐州市總投資為443億元的軌道交通1、2、3號線同時共建中,建成后將有效緩解我市交通壓力、便利市民出行、提高城市整體實力,443億用科學記數(shù)法表示為( )
A.0.443×1010
B.4.43×109
C.443×108
D.4.43×1010
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察如圖所示的長方體后填空
用符號表示下列兩棱的位置關系:
A1B1____AB ,AA1____AB ,
A1D1____C1D1 , AD____BC;
(2)A1B1與BC所在的直線是兩條不相交的直線,他們_ ___平行線(填“是”或“不是”).由此可知,在__________,兩條不相交的直線才能叫平行線.
(3)在同一平面內,兩條不重合的直線位置關系只有_____種,即_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,假命題是( 。
A. 一組對邊相等的四邊形是平行四邊形
B. 三個角是直角的四邊形是矩形
C. 四邊相等的四邊形是菱形
D. 有一個角是直角的菱形是正方形
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com