【題目】如圖1是一個(gè)長(zhǎng)為4a、寬為b的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后用四塊小長(zhǎng)方形拼成一個(gè)“回形”正方形(如圖2

1)觀察圖2請(qǐng)你寫出(a+b2、(ab2ab之間的等量關(guān)系是   ;

2)根據(jù)(1)中的結(jié)論,若x+y5,xy,則xy   

3)拓展應(yīng)用:若(2019m2+m2020215,求(2019m)(m2020)的值.

【答案】1(a+b)2-(a-b)2=4ab;(2)±4;(3-7

【解析】

1)由圖可知,圖1的面積為4ab,圖2中白色部分的面積為(a+b)2-(b-a)2=(a+b)2-(a-b)2,圖1的面積和圖2中白色部分的面積相等即可求解.

2)由(1)知,(x+y)2-(x-y)2=4xy,將x+y5xy代入(x+y)2-(x-y)2=4xy,即可求得x-y的值

3)因?yàn)?/span>(2019m)+(m2020)-1,等號(hào)兩邊同時(shí)平方,已知(2019m)2+(m2020)215,即可求解.

1)由圖可知,圖1的面積為4ab,圖2中白色部分的面積為(a+b)2-(b-a)2=(a+b)2-(a-b)2

∵圖1的面積和圖2中白色部分的面積相等

(a+b)2-(a-b)2=4ab

故答案為:(a+b)2-(a-b)2=4ab

2)由(1)知,(x+y)2-(x-y)2=4xy

x+y5,xy

52-(x-y)2=4×

(x-y)2=16

x-y=±4

故答案為:±4

3)∵(2019m)+(m2020)-1

[(2019m)+(m2020)]2=1

(2019m)2+2(2019m)(m2020)+ (m2020)2=1

(2019m)2+(m2020)215

2(2019m)(m2020)=1-15=-14

(2019m)(m2020)=-7

故答案為:-7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC在x軸正半軸上,點(diǎn)A在第一象限,延長(zhǎng)AB交y軸負(fù)半軸于點(diǎn)D,延長(zhǎng)CA到點(diǎn)E,使AE=AC,雙曲線y= (x>0)的圖象過點(diǎn)E.若△BCD的面積為2 ,則k的值為( )

A.4
B.4
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組,給出下列結(jié)論

是方程組的解;②無論a取何值,xy的值都不可能互為相反數(shù);

當(dāng)a=1時(shí),方程組的解也是方程x+y=4﹣a的解;④x,y的都為自然數(shù)的解有4對(duì)

其中正確的個(gè)數(shù)為(  

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC=6,BD=8,M、N分別是BC、CD的中點(diǎn),P是線段BD上的一個(gè)動(dòng)點(diǎn),則PM+PN的最小值是 ____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:

1

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,DC切⊙O于點(diǎn)C,若∠A=25°,則∠D等于( )

A.20°
B.30°
C.40°
D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正三角形AEF的頂點(diǎn)A重合,將△AEF繞其頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)BE=DF時(shí),∠BAE的大小可以是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如.善于思考的小明進(jìn)行了以下探索:

設(shè)(其中、、、均為整數(shù)),則有

,.這樣小明就找到了一種把類似的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問題:

1)當(dāng)、、均為正整數(shù)時(shí),若,用含的式子分別表示、,得:    ;

2)利用所探索的結(jié)論,找一組正整數(shù)、、填空:         ;

3)若,且、、均為正整數(shù),求的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為12cm的等邊三角形ABC中,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以每秒鐘1cm的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以每秒鐘2cm的速度移動(dòng).若P、Q分別從AB同時(shí)出發(fā),其中任意一點(diǎn)到達(dá)目的地后,兩點(diǎn)同時(shí)停止運(yùn)動(dòng),求:

1)經(jīng)過6秒后,BP=      cm,BQ=      cm;

2)經(jīng)過幾秒后,BPQ是直角三角形?

3)經(jīng)過幾秒BPQ的面積等于cm2?

查看答案和解析>>

同步練習(xí)冊(cè)答案