【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一棵古樹(shù)BH和教學(xué)樓CG的高,先在A處用高15米的測(cè)角儀測(cè)得古樹(shù)頂端H的仰角,此時(shí)教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達(dá)B處,又測(cè)得教學(xué)樓頂端G的仰角,點(diǎn)A、BC三點(diǎn)在同一水平線上.

1)求古樹(shù)BH的高;

2)求教學(xué)樓CG的高.

【答案】18.5米;(2

【解析】

1)利用等腰直角三角形的性質(zhì)即可解決問(wèn)題;

2)作HJCGG.則△HJG是等腰直角三角形,四邊形EFJH是矩形,設(shè)GJ=EF=HJ=x.構(gòu)建方程即可解決問(wèn)題;

1)由題意:四邊形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,

RtDEH中,∵∠HDE=45°,

HE=DE=7米,

BH=EH+BE=8.5米,

所以古樹(shù)BH的高為8.5米;

2)作HJCGJ.易證△HJG是等腰直角三角形,四邊形EFJH是矩形,

JF=HE =7米,

設(shè)HJ =x.則GJ=EF=HJ=x,

RtEFG中,tan60°=,

,

,

(米);

所以教學(xué)樓CG的高為米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中.

(1)若直線經(jīng)過(guò)、兩點(diǎn),求直線和拋物線的解析式;

(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);

(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)的坐標(biāo)為

1)畫(huà)出關(guān)于軸對(duì)稱的,并寫(xiě)出點(diǎn)的坐標(biāo);

2)坐標(biāo)平面的格點(diǎn)上確定一個(gè)點(diǎn),使是以為底的等腰直角三角形,且點(diǎn)在點(diǎn)的下方,畫(huà)出,并寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)請(qǐng)用直尺、圓規(guī)作圖,不寫(xiě)作法,但要保留作圖痕跡.

已知:如圖,∠ABC,射線BC上一點(diǎn)D

求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等;

2)在(1)的條件下,若∠ABC60°,求等腰三角形△PBD頂角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是反比例函數(shù)x軸上方的圖象,點(diǎn)Cy軸正半軸上的一點(diǎn),過(guò)點(diǎn)C軸分別交這兩個(gè)圖象與點(diǎn)A和點(diǎn)BPQx軸上,且四邊形ABPQ為平行四邊形,則四邊形ABPQ的面積等于(

A.20B.15C.10D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1

1)以O點(diǎn)為位似中心在y軸的左側(cè)將OBC放大兩倍(即新圖與原圖的相似比為2),請(qǐng)?jiān)趫D中畫(huà)出B1 OC1,并寫(xiě)出這時(shí)B1 坐標(biāo) ;

2)將BOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到B2OC2,請(qǐng)?jiān)趫D中作B2OC2,,井寫(xiě)出這時(shí)點(diǎn)B2的坐標(biāo)為

3)在(2)中的旋轉(zhuǎn)過(guò)程中,求線段BC掃過(guò)的圖形的面積 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O.E,F(xiàn)AC上的兩點(diǎn),并且AE=CF,連接DE,BF.

(1)求證:DOE≌△BOF;

(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師為了了解班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查.他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)請(qǐng)計(jì)算出A類男生和C類女生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

(2)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來(lái)越高,某公司根據(jù)市場(chǎng)需求代理A,B兩種型號(hào)的凈水器,每臺(tái)A型凈水器比每臺(tái)B型凈水器進(jìn)價(jià)多200元,用5萬(wàn)元購(gòu)進(jìn)A型凈水器與用4.5萬(wàn)元購(gòu)進(jìn)B型凈水器的數(shù)量相等

1)求每臺(tái)A型、B型凈水器的進(jìn)價(jià)各是多少元?

2)該公司計(jì)劃購(gòu)進(jìn)A,B兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷,其中A型凈水器為x臺(tái),購(gòu)買資金不超過(guò)9.8萬(wàn)元,試銷時(shí)A型凈水器每臺(tái)售價(jià)2500元,B型凈水器每臺(tái)售價(jià)2180元,公司決定從銷售A型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的最大利潤(rùn)不低于20200元但不超過(guò)23000元,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案