【題目】如圖,的直徑,為弧的中點,正方形繞點旋轉與的兩邊分別交于、(點與點、均不重合),與分別交于、兩點.

1)求證:為等腰直角三角形;

2)求證:;

3)連接,試探究:在正方形繞點旋轉的過程中,的周長是否存在最小值?若存在,求出其最小值;若不存在,請說明理由.

【答案】1)見解析;(2)見解析;(3)存在,

【解析】

1)根據(jù)圓周角定理由AB是⊙O的直徑得∠AMB=90°,由M是弧AB的中點得,于是可判斷△AMB為等腰直角三角形;

2)連接OM,根據(jù)等腰直角三角形的性質得∠ABM=BAM=OMA=45°,OMABMB=AB=6,再利用等角的余角相等得∠BOE=MOF,則可根據(jù)“SAS”判斷△OBE≌△OMF,所以OE=OF

3)易得△OEF為等腰直角三角形,則EF=OE,再由△OBE≌△OMFBE=MF,所以△EFM的周長=EF+MF+ME=EF+MB=OE+4,根據(jù)垂線段最短得當OEBM時,OE最小,此時OE=BM=2,進而求得△EFM的周長的最小值.

1)證明:的直徑,

是弧的中點,

,

為等腰直角三角形.

2)證明:連接,

由(1)得:

,

中,

,

3)解:的周長有最小值.

,

為等腰直角三角形,

,

,

的周長

時,最小,此時,

的周長的最小值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某水果超市經(jīng)銷一種進價為18/kg的水果,根據(jù)以前的銷售經(jīng)驗,該種水果的最佳銷售期為20天,銷售人員整理出這種水果的銷售單價y(元/kg)與第x天(1≤x≤20)的函數(shù)圖象如圖所示,而第x天(1≤x≤20)的銷售量mkg)是x的一次函數(shù),滿足下表:

x(天)

1

2

3

mkg

20

24

28

1)請分別寫出銷售單價y(元/kg)與x(天)之間及銷售量mkg)是x(天)的之間的函數(shù)關系式

2)求在銷售的第幾天時,當天的利潤最大,最大利潤是多少?

3)請求出試銷的20天中當天的銷售利潤不低于1680元的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來某市大力發(fā)展綠色交通,構建公共、綠色交通體系,將共享單車陸續(xù)放置在人口流量較大的地方,琪琪同學隨機調查了若干市民用共享單車的情況,將獲得的數(shù)據(jù)分成四類,:經(jīng)常使用;:偶爾使用;:了解但不使用;:不了解,并繪制了如下兩個不完整的統(tǒng)計圖.請根據(jù)以上信息,解答下列問題:

1)這次被調查的總人數(shù)是 人,:了解但不使用的人數(shù)是 人,:不了解所占扇形統(tǒng)計圖的圓心角度數(shù)為 .

2)某小區(qū)共有人,根據(jù)調查結果,估計使用過共享單車的大約有多少人?

3)目前共享單車有黃色、藍色、綠色三種可選,某天小張和小李一起使用共享單車出行,求兩人騎同一種顏色單車的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,點EAC且不與點AC重合,在的外部作等腰,使,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

請直接寫出線段AF,AE的數(shù)量關系;

繞點C逆時針旋轉,當點E在線段BC上時,如圖,連接AE,請判斷線段AF,AE的數(shù)量關系,并證明你的結論;

,,在圖的基礎上將繞點C繼續(xù)逆時針旋轉一周的過程中,當平行四邊形ABFD為菱形時,直接寫出線段AE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,D、E分別是邊AC、BC的中點,FBC延長線上一點,∠F=B

(l)AB=1O,求FD的長;

(2)AC=BC.求證:CDEDFE .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點在邊上,點在邊上,且的直徑,的平分線與相交于點.

1)證明:直線的切線;

2)連接,若,,求邊的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為培育青少年科技創(chuàng)新能力,舉辦了動漫制作活動,小明設計了點做圓周運動的一個雛形,如圖所示,甲、乙兩點分別從直徑的兩端點、,以順時針、逆時針的方向同時沿圓周運動,甲運動的路程與時間滿足關系,乙以的速度勻速運動,半圓的長度為

1)甲運動后的路程是多少?

2)甲、乙從開始運動到第一次相遇時,它們運動了多少時間?

3)甲、乙從開始運動到第二次相遇時,它們運動了多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“慈善一日捐”活動中,為了解某校學生的捐款情況,抽樣調查了該校部分學生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計圖.

1)本次調查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;

2)求這組數(shù)據(jù)的平均數(shù);

3)該校共有學生參與捐款,請你估計該校學生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某物流公司承接A、B兩種貨物運輸業(yè)務,已知3月份A貨物運費單價為50/噸,B貨物運費單價為30/噸,共收取運費9500元;4月份由于工人工資上漲,運費單價上漲情況為:A貨物運費單價增加了40%,B貨物運費單價上漲到40元/噸;該物流公司4月承接的A種貨物和B種貨物的數(shù)量與3月份相同,4月份共收取運費13000.試求該物流公司3月份運輸A、B兩種貨物各多少噸?

查看答案和解析>>

同步練習冊答案