【題目】在平行四邊形中,對角線、交于點、是上一點,連接,點在邊上,且交于點,連接,已知,.
(1)若,,求的長;
(2)求證:.
【答案】(1);(2)見解析
【解析】
(1)延長CG交AD于N,連接NF,AC交DE于H,證出∠DGN=∠CGE=45°,GC⊥AD,得出∠GFD=90°=∠GND,證出N、G、F、D四點共圓,由圓周角定理得出∠NFG=∠NDG=45°,由∠ANC=∠AFC=90°,得出A、N、F、C四點共圓,由圓周角定理得出∠ACN=∠NFG=45°,得出∠CHD=90°,由直角三角形的性質得出DN=
CD=2,CN=DN=2,得出AC=CN=2;
(2)由(1)得:△ADH、△CGH是等腰直角三角形,由等腰直角三角形的性質即可得出結論.
(1)解:延長CG交AD于N,連接NF,AC交DE于H,如圖所示:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵GC⊥BC,∠DEC=45°,
∴∠DGN=∠CGE=45°,GC⊥AD,
∴∠GND=90°,
∴∠NDG=45°,
∵AF⊥CD,
∴∠GFD=90°=∠GND,
∴N、G、F、D四點共圓,
∴∠NFG=∠NDG=45°,
又∵∠ANC=∠AFC=90°,
∴A、N、F、C四點共圓,
∴∠ACN=∠NFG=45°,
∴∠CHD=45°+45°=90°,
∵CD=4,∠DCG=30°,
∴DN=
CD=2,CN=DN=2,
∴AC=CN=2;
(2)證明:由(1)得:△ADH、△CGH是等腰直角三角形,
∴AD=HD=(HG+DG)=HG+DG=CG+DG.
科目:初中數學 來源: 題型:
【題目】如圖,直線 m,n 相交于 O,所夾的銳角是 53°,點 P,Q 分別是直線 m,n上的點,將直線 m,n 按照下面的程序操作,能使兩直線平行的是( )
A. 將直線 m 以點 O 為中心,順時針旋轉 53° B. 將直線 n 以點 Q 為中心,順時針旋轉 53°
C. 將直線 m 以點 P 為中心,順時針旋轉 53° D. 將直線 m 以點 P 為中心,順時針旋轉 127°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家支持大學生創(chuàng)新辦實業(yè),提供小額無息貸款,學生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進價為每件40元,該品牌服裝售量y(件)與銷售價x(元/件)之間的關系可用圖中的一條線段(實線)來表示.
(1)求日銷售量y與銷售價x之間的函數關系式,并寫出x的取值范圍;
(2)該品牌服裝售價x為多少元時,每天的銷售利潤W最大,且最大銷售利潤W為多少?
(3)若該店應支付員工的工資為每人每天82元,每天還應支付其它費用為106元(不包含貸款).現該店只有2名員工,則該店至少需要多少天才能還清所有貸款?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學生的選修情況,學校采取隨機抽樣的方法進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一門).對調查結果進行了整理,繪制成如下兩幅不完整的統計圖,請結合圖中所給信息解答下列問題:
(1)本次調查的學生共有 人,在扇形統計圖中,m的值是 ;
(2)將條形統計圖補充完整;
(3)在被調查的學生中,選修書法的有2名女同學,其余為男同學,現要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線OA:y=x的圖象與反比例函數y=(k≠0)在第一象限的圖象交于A點,過A點作軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數的解析式;
(2)如果B為反比例函數在第一象限圖象上的點(點B與點A不重合),且B點的橫坐標為1,在x軸上求一點P,使PA+PB最。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+與雙曲線y=在第一象限內的圖象交于一點A(1,1),與x負半軸交與點B.點P(m,n)是該雙曲線在第一象限內圖象上的一點,且P點在A點的右側,分別過點A、P作x軸的垂線,垂足分別為點C、D,連結PB.則△ABC的面積___△PBD的面積(填“<”、“=”或“>”).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點A為⊙0外一點,過A作⊙O的切線與⊙O相切于點P,連接PO并延長至圓上一點B連接AB交⊙O于點C,連接OA交⊙O于點D連接DP且∠OAP=∠DPA。
(1)求證:PO=PD
(2)若AC=,求⊙O的半徑。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商場某種新商品每件進價是40元,在試銷期間發(fā)現,當每件商品售價50元時,每天可銷售500件,當每件商品售價高于50元時,每漲價5元,日銷售量就減少50件。據此規(guī)律,請回答:
(1)當每件商品售價定為55元時,每天可銷售多少件商品?商場獲得的日盈利是多少?
(2)在上述條件不變,商品銷售正常的情況下,每件商品的銷售定價為多少元時,商場日盈利可達到8000元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com