【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=2,AP=1.將直角尺的頂點(diǎn)放在P處,直角尺的兩邊分別交AB,BC于點(diǎn)E,F(xiàn),連接EF(如圖①).
(1)當(dāng)點(diǎn)E與點(diǎn)B重合時,點(diǎn)F恰好與點(diǎn)C重合(如圖②),求PC的長;
(2)探究:將直尺從圖②中的位置開始,繞點(diǎn)P順時針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時停止.在這個過程中,請你觀察、猜想,并解答:
①tan∠ PEF的值是否發(fā)生變化?請說明理由;
②直接寫出從開始到停止,線段EF的中點(diǎn)經(jīng)過的路線長.
【答案】(1)PC=2;(2)①∠PEF的大小不變.②
【解析】試題分析:(1)由勾股定理求PB,利用互余關(guān)系證明△APB∽△DCP,利用相似比求PC;
(2)①tan∠PEF的值不變.過F作FG⊥AD,垂足為G,同(1)的方法證明△APB∽△DCP,得相似比=2,再利用銳角三角函數(shù)的定義求值;
②如圖3,畫出起始位置和終點(diǎn)位置時,線段EF的中點(diǎn)O1,O2,連接O1O2,線段O1O2即為線段EF的中點(diǎn)經(jīng)過的路線長,也就是△BPC的中位線.
試題解析:(1)在矩形ABCD中,∠A=∠D=90°,
AP=1,CD=AB=2,則PB=,
∴∠ABP+∠APB=90°,
又∵∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴,即,
∴PC=2;
(2)①tan∠PEF的值不變.
理由:過F作FG⊥AD,垂足為G,
則四邊形ABFG是矩形,
∴∠A=∠PGF=90°,GF=AB=2,
∴∠AEP+∠APE=90°,
又∵∠EPF=90°,
∴∠APE+∠GPF=90°,
∴∠AEP=∠GPF,
∴△APE∽△GPF,
∴=2,
∴Rt△EPF中,tan∠PEF==2,
∴tan∠PEF的值不變;
②設(shè)線段EF的中點(diǎn)為O,連接OP,OB,
∵在Rt△EPF中,OP=EF,
在Rt△EBF中,OB=EF,
∴OP=OB=EF,
∴O點(diǎn)在線段BP的垂直平分線上,
∴線段EF的中點(diǎn)經(jīng)過的路線長為O1O2=PC=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(1,﹣2)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)是( )
A. (﹣1,﹣2) B. (1,2) C. (﹣1,2) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A(2,3),B(3,1),C(﹣2,﹣2)三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)直接寫出△ABC關(guān)于x軸對稱的△A2B2C2的各點(diǎn)坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2x+a=0有兩個實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了進(jìn)一步緩解交通擁堵問題,決定修建一條長為7千米的公路.如果平均每天的修建費(fèi)y(萬元)與修建天數(shù)x(天)在30≤x≤12 0之間時具有一次函數(shù)的關(guān)系,如下表所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)后來在修建的過程中計(jì)劃發(fā)生改變,政府決定多修3千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計(jì)劃晚了15天,求原計(jì)劃每天的修建費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用a、b、c作三角形的三邊,其中不能構(gòu)成直角三角形的是( )
A. a2=(b+c)(b﹣c) B. a:b:c=1: :2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120度時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com