【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結(jié)論正確的是____________
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并按要求解決問題: 問題:“在平面內(nèi),已知分別有個點,個點,個點,5 個點,…,n 個點,其中任意三 個點都不在同一條直線上.經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個問題,希望小組的同學(xué)們設(shè)計了如下表格進行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點的一條直線)
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個點時,直線條數(shù)為 ;
(2)若某同學(xué)按照本題中的方法,共畫了條直線,求該平面內(nèi)有多少個已知點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交舡于點G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2) 求證: ;
(3)若AG=6,EG=2,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0)、B(4,0)兩點,與y軸交于點C,且OC=3OA.點P是拋物線上的一個動點,過點P作PE⊥x軸于點E,交直線BC于點D,連接PC.
(1)求拋物線的解析式;
(2)如圖2,當(dāng)動點P只在第一象限的拋物線上運動時,求過點P作PF⊥BC于點F,試問△PDF的周長是否有最大值?如果有,請求出其最大值,如果沒有,請說明理由.
(3)當(dāng)點P在拋物線上運動時,將△CPD沿直線CP翻折,點D的對應(yīng)點為點Q,試問,四邊形CDPQ是否成為菱形?如果能,請求出此時點P的坐標,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應(yīng)降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖,拋物線與軸交于兩點,點在拋物線上(點與兩點不重合),如果的三邊滿足,則稱點為拋物線的勾股點。
()直接寫出拋物線的勾股點的坐標;
()如圖,已知拋物線:與軸交于兩點,點是拋物線的勾股點,求拋物線的函數(shù)表達式;
()在()的條件下,點在拋物線上,求滿足條件的點(異于點)的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D、E分別在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,則BE=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級四個數(shù)學(xué)活動小組參加測量操場旗桿高度的綜合實踐活動,如圖是四個小組在不同位置測量后繪制的示意圖,用測角儀測得旗桿頂端A的仰角記為α,CD為測角儀的高,測角儀CD的底部C處與旗桿的底部B處之間的距離記為CB,四個小組測量和計算數(shù)據(jù)如下表所示:
數(shù)據(jù)組別 | CD的長(m) | BC的長(m) | 仰角α | AB的長(m) |
第一組 | 1.59 | 13.2 | 32° | 9.8 |
第二組 | 1.58 | 13.4 | 31° | 9.6 |
第三組 | 1.57 | 14.1 | 30° | 9.7 |
第四組 | 1.56 | 15.2 | 28° |
(1)利用第四組學(xué)生測量的數(shù)據(jù),求旗桿AB的高度(精確到0.1m);
(2)四組學(xué)生測量旗桿高度的平均值約為 m(精確到0.1m).
(參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點M在BC邊上,且BM=BC,AM與BD相交于點N,那么S△BMN:S平行四邊形ABCD為( 。
A.1:3B.1:9C.1:12D.1:24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com