【題目】如圖,在平行四邊形ABCD中,點(diǎn)M在BC邊上,且BM=BC,AM與BD相交于點(diǎn)N,那么S△BMN:S平行四邊形ABCD為( 。
A.1:3B.1:9C.1:12D.1:24
【答案】D
【解析】
根據(jù)平行四邊形的性質(zhì)得出AD=BC,AD∥BC,求出BC=3BM=AD,根據(jù)相似三角形的判定得出△AND∽△MNB,求出DN:BN=AD:BM=3:1,根據(jù)相似三角形的性質(zhì)和三角形的面積公式求出S△ABN=3S△BMN,S△AND=9S△BMN,即可得出答案.
解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∵M為BC邊的中點(diǎn),
∴BC=2BM=AD,
∵AD∥BC,
∴△AND∽△MNB,
∴DN:BN=AD:BM=3:1,
∴,,
∴S△ABN=3S△BMN,S△AND=9S△BMN,
∴S平行四邊形ABCD=2S△ABD=2(S△AND+S△ABN)=24S△BMN,
即S△BMN:SABCD=1:24,
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac-b+1=0;④OA·OB=-.其中結(jié)論正確的是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點(diǎn)F,AO⊥BC,垂足為點(diǎn)E,OA=6.
(1)求∠C的大;
(2)求陰影部分的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列不等式(組)
(1)
(2)
(3) (并在數(shù)軸上表示出解集 )
(4) (解不等式組并寫出整數(shù)解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為響應(yīng)全民閱讀活動(dòng),利用節(jié)假日面向社會(huì)開放學(xué)校圖書館.據(jù)統(tǒng)計(jì),第一個(gè)月進(jìn)館128人次,進(jìn)館人次逐月增加,到第三個(gè)月進(jìn)館達(dá)到288人次,若進(jìn)館人次的月平均增長率相同.
(1)求進(jìn)館人次的月平均增長率;
(2)因條件限制,學(xué)校圖書館每月接納能力不得超過500人次,在進(jìn)館人次的月平均增長率不變的條件下,校圖書館能否接待第四個(gè)月的進(jìn)館人次,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,笑笑和爸爸想要測量直立在地面上的建筑物OP與廣告牌AB的高度.首先,笑笑站在離廣告牌B處4米的D處看到廣告牌AB的頂端A、建筑物OP的頂端O一條直線上;此時(shí),在陽光下,爸爸站在N處,他的影長NE=2.1米,同一時(shí)刻,測得建筑物OP的影長為PG=28米,已知建筑物OP與廣告牌AB之間的水平距離為11米,笑笑的眼睛到地面的距離CD=1.5米,爸爸的身高MN=1.8米.
(1)請你畫出表示建筑物OP在陽光下的影子PG;
(2)求:①建筑物OP的高度;
②廣告牌AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答下列問題:
阿爾花拉子米(約780~約850),著名阿拉伯?dāng)?shù)學(xué)家、天文學(xué)家、地理學(xué)家,是代數(shù)與算術(shù)的整理者,被譽(yù)為“代數(shù)之父”.他利用正方形圖形巧妙解出了一元二次方程x2+2x﹣35=0的一個(gè)解.
將邊長為x的正方形和邊長為1的正方形,外加兩個(gè)長方形,長為x,寬為1,拼合在一起面積就是x2+2×1+1×1,即x2+2x+1,而由原方程x2+2x﹣35=0變形得x2+2x+1=35+1,即右邊邊長為x+1的正方形面積為36.所以(x+1)2=36,則x=5.
(1)上述求解過程中所用的方法與下列哪種方法是一致的 .
A.直接開平方法 B.公式法
C.配方法 D.因式分解法
(2)所用的數(shù)學(xué)思想方法是 .
A.分類討論思想 B.?dāng)?shù)形結(jié)合思想 C.轉(zhuǎn)化思想
(3)運(yùn)用上述方法構(gòu)造出符合方程x2+4x﹣5=0的一個(gè)正根的正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,AB=AC,點(diǎn)E是邊AC上一點(diǎn),過點(diǎn)E作EF∥BC交AB于點(diǎn)F
(1)如圖①,求證:AE=AF;
(2)如圖②,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<144°)得到△AE′F′.連接CE′BF′.
①若BF′=6,求CE′的長;
②若∠EBC=∠BAC=36°,在圖②的旋轉(zhuǎn)過程中,當(dāng)CE′∥AB時(shí),直接寫出旋轉(zhuǎn)角α的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上有一個(gè)不規(guī)則的封閉圖形ABCD,為求得它的面積,小明在此封閉圖形內(nèi)畫出一個(gè)半徑為2米的圓后,在附近閉上眼睛向封閉圖形內(nèi)擲小石子(可把小石子近似地看成點(diǎn)),記錄如下:
擲小石子落在不規(guī)則圖形內(nèi)的總次數(shù) | 50 | 150 | 300 | … |
小石子落在圓內(nèi)(含圓上)的次數(shù)m | 20 | 59 | 123 | … |
小石子落在圓外的陰影部分(含外緣)的次數(shù)n | 29 | 91 | 176 | … |
(1)當(dāng)投擲的次數(shù)很大時(shí),則m:n的值越來越接近 (結(jié)果精確到0.1)
(2)若以小石子所落的有效區(qū)域?yàn)榭倲?shù)(即m+n),則隨著投擲次數(shù)的增大,小石子落在圓內(nèi)(含圓上)的頻率值穩(wěn)定在 附近(結(jié)果精確到0.1);
(3)請你利用(2)中所得頻率的值,估計(jì)整個(gè)封閉圖形ABCD的面積是多少平方米?(結(jié)果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com