【題目】如圖,拋物線yax2+x+ca0)與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(02).

1)求拋物線的解析式;

2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;

3)點(diǎn)E是線段BC上的一個(gè)動點(diǎn),過點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

【答案】(1)y=﹣x2+x+2(2)(4)或(,)或(,﹣)(3)(2,1

【解析】

1)利用待定系數(shù)法轉(zhuǎn)化為解方程組即可.

2)如圖1中,分兩種情形討論①當(dāng)CPCD時(shí),②當(dāng)DPDC時(shí),分別求出點(diǎn)P坐標(biāo)即可.

3)如圖2中,作CMEFM,設(shè)0≤a≤4),根據(jù)S四邊形CDBFSBCD+SCEF+SBEF構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.

解:(1)由題意

解得

∴二次函數(shù)的解析式為

2)存在.如圖1中,

C0,2),

CD

當(dāng)CPCD時(shí),

當(dāng)DPDC時(shí),

綜上所述,滿足條件的點(diǎn)P坐標(biāo)為

3)如圖2中,作CMEFM

B4,0),C0,2),

∴直線BC的解析式為設(shè)

0≤a≤4),

S四邊形CDBFSBCD+SCEF+SBEF

,

a2時(shí),四邊形CDBF的面積最大,最大值為,

E21).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師在微信群發(fā)了這樣一個(gè)圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點(diǎn)為F,下列四位同學(xué)的說法不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.

運(yùn)動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

(1)寫出運(yùn)動員甲測試成績的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么? (參考數(shù)據(jù):三人成績的方差分別為、)

(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時(shí)球回到甲手中的概率是多少?(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過A(1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對稱軸DE交x軸于點(diǎn)E,連接BD.

(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;

(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,過點(diǎn)P作PFx軸于點(diǎn)F,G為拋物線上一動點(diǎn),M為x軸上一動點(diǎn),N為直線PF上一動點(diǎn),當(dāng)以F、M、G為頂點(diǎn)的四邊形是正方形時(shí),請求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視經(jīng)典詠流傳開播以來受到社會廣泛關(guān)注.我市某校就中華文化我傳承——地方戲曲進(jìn)校園的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:

圖中A表示很喜歡”,B表示喜歡”,C表示一般”,D表示不喜歡”.

(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對應(yīng)的扇形圓心角的度數(shù)為_______.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;

(4)在抽取的A5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)在△ABC中,ABAC,點(diǎn)PBC所在直線上的任一點(diǎn),過點(diǎn)PPDAB,PEAC,垂足分別為D、E,過點(diǎn)CCFAB,垂足為F.當(dāng)PBC邊上時(shí)(如圖1),求證:PD+PECF

證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PECF.(不要證明)

(變式探究)(1)當(dāng)點(diǎn)PCB延長線上時(shí),其余條件不變(如圖3),試探索PDPE、CF之間的數(shù)量關(guān)系并說明理由;

請運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:

(結(jié)論運(yùn)用)(2)如圖4,將長方形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)PPGBE、PHBC,垂足分別為G、H,若AD16,CF6,求PG+PH的值.

(遷移拓展)(3)在直角坐標(biāo)系中,直線l1y-x+8與直線l2y=﹣2x+8相交于點(diǎn)A,直線l1l2x軸分別交于點(diǎn)B、點(diǎn)C.點(diǎn)P是直線l2上一個(gè)動點(diǎn),若點(diǎn)P到直線l1的距離為2.求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥ABEBC的中點(diǎn),AD⊥AE

1)求證:AC2=CD·BC

2)過EEG⊥AB,并延長EG至點(diǎn)K,使EK=EB

若點(diǎn)H是點(diǎn)D關(guān)于AC的對稱點(diǎn),點(diǎn)FAC的中點(diǎn),求證:FH⊥GH;

∠B=30°,求證:四邊形AKEC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm,花園的面積為Sm2

1)若花園的面積為192m2,求x的值;

2)寫出花園面積Sx的函數(shù)關(guān)系式.x為何值時(shí),花園面積S有最大值?最大值為多少?

3)若在P處有一棵樹與墻CD,AD的距離分別是a14a22)和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),設(shè)花園面積S的最大值為y,直接寫出ya的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca,bc是常數(shù),a0)經(jīng)過點(diǎn)A10)和點(diǎn)B0,﹣2),且頂點(diǎn)在第三象限,記mab+c,則m的取值范圍是( 。

A. 1m0B. 2m0C. 4m<﹣2D. 4m0

查看答案和解析>>

同步練習(xí)冊答案