【題目】(問題情境)在△ABC中,AB=AC,點(diǎn)P為BC所在直線上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CF⊥AB,垂足為F.當(dāng)P在BC邊上時(如圖1),求證:PD+PE=CF.
證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)
(變式探究)(1)當(dāng)點(diǎn)P在CB延長線上時,其余條件不變(如圖3),試探索PD、PE、CF之間的數(shù)量關(guān)系并說明理由;
請運(yùn)用上述解答中所積累的經(jīng)驗和方法完成下列兩題:
(結(jié)論運(yùn)用)(2)如圖4,將長方形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值.
(遷移拓展)(3)在直角坐標(biāo)系中,直線l1:y=-x+8與直線l2:y=﹣2x+8相交于點(diǎn)A,直線l1、l2與x軸分別交于點(diǎn)B、點(diǎn)C.點(diǎn)P是直線l2上一個動點(diǎn),若點(diǎn)P到直線l1的距離為2.求點(diǎn)P的坐標(biāo).
【答案】【變式探究】證明見解析【結(jié)論運(yùn)用】8【遷移拓展】(﹣1,6),(1,10)
【解析】
【變式探究】
連接AP,同理利用△ABP與△ACP面積之差等于△ABC的面積可以證得;
【結(jié)論運(yùn)用】
過點(diǎn)E作EQ⊥BC,垂足為Q,根據(jù)勾股定理和矩形的性質(zhì)解答即可;
【遷移拓展】
分兩種情況,利用結(jié)論,求得點(diǎn)P到x軸的距離,再利用待定系數(shù)法可求出P的坐標(biāo).
變式探究:連接AP,如圖3:
∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,
∴ABCF=ACPE﹣ ABPD.
∵AB=AC,
∴CF=PD﹣PE;
結(jié)論運(yùn)用:過點(diǎn)E作EQ⊥BC,垂足為Q,如圖④,
∵四邊形ABCD是長方形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=16,CF=6,
∴BF=BC﹣CF=AD﹣CF=5,
由折疊可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∵∠C=90°,
∴DC==8.
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC.
∴四邊形EQCD是長方形.
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB.
∴BE=BF,
由問題情境中的結(jié)論可得:PG+PH=EQ.
∴PG+PH=8.
∴PG+PH的值為8;
遷移拓展:如圖,
由題意得:A(0,8),B(6,0),C(﹣4,0)
∴AB==10,BC=10.
∴AB=BC,
(1)由結(jié)論得:P1D1+P1E1=OA=8
∵P1D1=1=2,
∴P1E1=6 即點(diǎn)P1的縱坐標(biāo)為6
又點(diǎn)P1在直線l2上,
∴y=2x+8=6,
∴x=﹣1,
即點(diǎn)P1的坐標(biāo)為(﹣1,6);
(2)由結(jié)論得:P2E2﹣P2D2=OA=8
∵P2D2=2,
∴P2E2=10 點(diǎn)P1的縱坐標(biāo)為10
又點(diǎn)P1在直線l2上,
∴y=2x+8=10,
∴x=1,
即點(diǎn)P1的坐標(biāo)為(1,10)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進(jìn)行防輻射處理;已知防輻射費(fèi)y萬元與科研所到宿舍樓的距離xkm之間的關(guān)系式為y=ax+b(0≤x≤3).當(dāng)科研所到宿舍樓的距離為1km時,防輻射費(fèi)用為720萬元;當(dāng)科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進(jìn)行防輻射處理,設(shè)修路的費(fèi)用與x2成正比,且比例系數(shù)為m萬元,配套工程費(fèi)w=防輻射費(fèi)+修路費(fèi).
(1)當(dāng)科研所到宿舍樓的距離x=3km時,防輻射費(fèi)y=____萬元,a=____,b=____;
(2)若m=90時,求當(dāng)科研所到宿舍樓的距離為多少km時,配套工程費(fèi)最少?
(3)如果最低配套工程費(fèi)不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若用“*”表示一種運(yùn)算規(guī)則,我們規(guī)定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下說法中錯誤的是( 。
A. 不等式(﹣2)*(3﹣x)<2的解集是x<3
B. 函數(shù)y=(x+2)*x的圖象與x軸有兩個交點(diǎn)
C. 在實數(shù)范圍內(nèi),無論a取何值,代數(shù)式a*(a+1)的值總為正數(shù)
D. 方程(x﹣2)*3=5的解是x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線(k<0)經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣6,4),則△AOC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+x+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E是線段BC上的一個動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號發(fā)射塔頂端到地面的高度FG為__米(結(jié)果精確到1m).
參考數(shù)據(jù):sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求證:四邊形ABCD是菱形;
(2)過點(diǎn)D作DE⊥BD,交BC的延長線于點(diǎn)E,若BC=5,BD=8,求四邊形ABED的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點(diǎn)A為圓心,BC邊的長為半徑作⊙A;
②以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com