【題目】在正方形ABCD中,P為AB邊上一點,將△BCP沿CP折疊,得到△FCP.
(1)如圖1,延長PF交AD于E,求證:EF=ED;
(2)如圖2,DF,CP的延長線交于點G,求的值.
【答案】(1)證明見解析(2)
【解析】
(1)連接CE,通過全等三角形的判定,得到Rt△CFE≌Rt△CDE,進而得出結論;
(2)連接BG、BF、BD,作CH⊥DF,垂足為H.依據(jù)△CFG≌△CBG,可得GF=GB,進而得出△GBF是等腰直角三角形,故BF=BG.再判定△BGA∽△FBD,即可得到.
(1)如圖1,連接CE,
∵四邊形ABCD是正方形,
∴BC=CD,∠B=∠D=90°.
∵△PBC和△FPC關于PC對稱,
∴BC=CF,∠B=∠PFC=90°.
∴∠EFC=90°.
∴∠EFC=∠D=90°,CF=CD.
∵CE=CE,
∴Rt△EFC≌Rt△DFC(HL).
∴EF=ED.
(2)如圖2,連接BG、BF、BD,作CH⊥DF,垂足為H.
∵四邊形ABCD是正方形,
∴BC=CD.
∵CH⊥DF,
∴∠HCF=,
∵△PBC和△FPC關于PC對稱,
∴BC=CF,∠FCG=∠BCG.
∴EB⊥CG.
又∵CG=CG,
∴△CFG≌△CBG.
∴GF=GB.
∵∠HCF=,∠FCG=∠BCG=,
∴∠HCK==45°.
∴∠PFH=135°.
∴∠GFB=45°.
∴∠GBF=45°.
∴△GBF是等腰直角三角形.
∴.
∵∠ABD=45°,
∴∠GBA=∠FBD.
∵,
∴△BGA∽△FBD.
∴.
科目:初中數(shù)學 來源: 題型:
【題目】在中,,點為所在平面內一點,過點分別作交于點,交于點,交于點.
若點在上(如圖①),此時,可得結論:.
請應用上述信息解決下列問題:
當點分別在內(如圖②),外(如圖③)時,上述結論是否成立?若成立,請給予證明;若不成立,,,,與之間又有怎樣的數(shù)量關系,請寫出你的猜想,不需要證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,王老師出示了如下框中的題目.
小明與同桌小聰討論后,進行了如下解答:
(1)特殊情況探索結論:在等邊三角形ABC中,當點E為AB的中點時,點D在CB點延長線上,且ED=EC;如圖1,確定線段AE與DB的大小關系.請你直接寫出結論 ;
(2)特例啟發(fā),解答題目
王老師給出的題目中,AE與DB的大小關系是: .理由如下:
如圖2,過點E作EF∥BC,交AC于點F,(請你完成以下解答過程)
(3)拓展結論,設計新題
在△ABC中,AB=BC=AC=1;點E在AB的延長線上,AE=2;點D在CB的延長線上,ED=EC,如圖3,請直接寫CD的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D,下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③=;④AB2=BDBC . 其中一定能夠判定△ABC是直角三角形的有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=50°,P為△ABC內一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為____________°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校利用暑假進行田徑場的改造維修,項目承包單位派遣一號施工隊進場施工,計劃用40天時間完成整個工程:當一號施工隊工作5天后,承包單位接到通知,有一大型活動要在該田徑場舉行,要求比原計劃提前14天完成整個工程,于是承包單位派遣二號與一號施工隊共同完成剩余工程,結果按通知要求如期完成整個工程.
(1)若二號施工隊單獨施工,完成整個工程需要多少天?
(2)若此項工程一號、二號施工隊同時進場施工,完成整個工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于、兩點,則下列一次函數(shù)中,能使線段最長的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com