【題目】如圖,已知△ABC中,∠ABC=50°,P為△ABC內(nèi)一點(diǎn),過點(diǎn)P的直線MN分別交AB、BC于點(diǎn)M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為____________°
【答案】115°
【解析】
根據(jù)三角形的內(nèi)角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質(zhì)得到AM=PM,PN=CN,由等腰三角形的性質(zhì)得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結(jié)論.
∵∠ABC=50°,
∴∠BAC+∠ACB=130°,
∵若M在PA的中垂線上,N在PC的中垂線上,
∴AM=PM,PN=CN,
∴∠MAP=∠APM,∠CPN=∠PCN,
∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,
∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,
∴∠APC=115°,
故答案為:115°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為考察兩名實(shí)習(xí)工人的工作情況,質(zhì)檢部將他們工作某一周每天生產(chǎn)合格產(chǎn)品的個(gè)數(shù)整理成甲、乙兩組數(shù)據(jù),如下表:
甲 | 2 | 6 | 7 | 7 | 8 |
乙 | 2 | 4 | 5 | 8 | 8 |
根據(jù)以上數(shù)據(jù),下面說法正確的是( )
A.甲、乙的眾數(shù)相同B.甲、乙的中位數(shù)相同
C.甲的平均數(shù)小于乙的平均數(shù)D.甲的方差小于乙的方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AD⊥BC,點(diǎn)D為垂足,AD=BD,點(diǎn)E在AD上,BE=AC
(1)求證:△BDE≌△ADC
(2)若M、N分別是BE、AC的中點(diǎn),分別聯(lián)結(jié)DM、DN. 求證:DM⊥DN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車計(jì)費(fèi)方法如圖所示,x(km)表示行駛里程,y(元)表示車費(fèi),請根據(jù)圖象回答下面的問題:
(1)出租車的起步價(jià)是多少元?當(dāng)x>3時(shí),求y關(guān)于x的函數(shù)關(guān)系式.
(2)若某乘客有一次乘出租車的車費(fèi)為32元,求這位乘客乘車的里程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,P為AB邊上一點(diǎn),將△BCP沿CP折疊,得到△FCP.
(1)如圖1,延長PF交AD于E,求證:EF=ED;
(2)如圖2,DF,CP的延長線交于點(diǎn)G,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30日,在A點(diǎn)測得D點(diǎn)的仰角∠EAD=45°,在B點(diǎn)測得D點(diǎn)的仰角為∠CBD=60°,測得甲、乙這兩座建筑物的高度分別為( 。┟祝
A. 10,30 B. 30,30 C. 30﹣3,30 D. 30﹣30,30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC=AD,∠CAD=60°,分別連接BC、BD,作AE平分∠BAC交BD于點(diǎn)E,若BE=4,ED=8,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車的背面,有一種特殊形狀的刮雨器,忽略刮雨器的寬度可抽象為一條折線,如圖所示,量得連桿長為,雨刮桿長為,.若啟動(dòng)一次刮雨器,雨刮桿正好掃到水平線的位置,如圖所示.
求雨刮桿旋轉(zhuǎn)的最大角度及、兩點(diǎn)之間的距離;
求雨刮桿掃過的最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com