【題目】如圖所示,一架梯子AB斜靠在墻面上,且AB的長為2.5米.

(1)若梯子底端離墻角的距離OB為0.7米,求這個(gè)梯子的頂端A距地面有多高?

(2)在(1)的條件下,如果梯子的頂端A下滑0.4米到點(diǎn)A′,那么梯子的底端B在水平方向滑動(dòng)的距離BB′為多少米?

【答案】12.4米;(20.8

【解析】

1)利用勾股定理可以得出梯子的頂端距離地面的高度.

2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的頂端距離地面的高度,再次使用勾股定理,已知梯子的底端距離墻的距離為0.7米,可以得出,梯子底端水平方向上滑行的距離.

解:(1)根據(jù)勾股定理:

所以梯子距離地面的高度為:AO=═2.4米;

2)梯子下滑了0.4米即梯子距離地面的高度為OA′=2.4-0.4=2米,

OB′==1.5米,

1.5-0.7=0.8

∴當(dāng)梯子的頂端下滑0.4米時(shí),梯子的底端B在水平方向滑動(dòng)的距離是0.8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象如圖所示,它與二次函數(shù)的圖象交于、兩點(diǎn)(其中點(diǎn)在點(diǎn)的左側(cè)),與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)

求點(diǎn)的坐標(biāo);

設(shè)二次函數(shù)圖象的頂點(diǎn)為

①若點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,且的面積等于,求此二次函數(shù)的關(guān)系式;

②若,且的面積等于,求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,2是由它抽象出的幾何圖形,B. C.E在同一條直線上,連結(jié)DC.

(1)請(qǐng)?jiān)趫D2中找出與ABE全等的三角形,并給予證明;

(2)證明:DCBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BDx軸于點(diǎn)C,且∠COD=∠CBO

(1)請(qǐng)直接寫出M的直徑,并求證BD平分∠ABO;

(2)在線段BD的延長線上尋找一點(diǎn)E,使得直線AE恰好與M相切,求此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB90°,AB5cmAC3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,

1)當(dāng)ABP為直角三角形時(shí),求t的值:

2)當(dāng)ABP為等腰三角形時(shí),求t的值.

(本題可根據(jù)需要,自己畫圖并解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸相交于、兩點(diǎn),與軸相交于點(diǎn),點(diǎn)、是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)

點(diǎn)坐標(biāo);

求二次函數(shù)的解析式;

根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,在中,,,,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng).

如果,分別從,同時(shí)出發(fā),那么幾秒后,的面積等于?

如果分別從,同時(shí)出發(fā),那么幾秒后,的長度等于

中,的面積能否等于?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,點(diǎn)、 分別在正方形 的邊上,,,連結(jié),把 繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使重合.的面積.

2)如圖,四邊形中,,,點(diǎn)、分別在、邊上,且,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作ADE=40°,DE交線段ACE點(diǎn).

1)當(dāng)BDA=115°時(shí),BAD=___°,DEC=___°;

2)當(dāng)DC等于多少時(shí),ABDDCE全等?請(qǐng)說明理由;

3)在點(diǎn)D的運(yùn)動(dòng)過程中,ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出BDA的度數(shù);若不可以,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案