【題目】在矩形ABCD中,BE平分∠ABC交CD邊于點E.點F在BC邊上,且FE⊥AE.
(1)如圖1,①∠BEC=_________°;
②在圖1已有的三角形中,找到一對全等的三角形,并證明你的結(jié)論;
(2)如圖2,F(xiàn)H∥CD交AD于點H,交BE于點M.NH∥BE,NB∥HE,連接NE.若AB=4,AH=2,求NE的長.
圖1 圖2
【答案】45
【解析】
(1)根據(jù)矩形的性質(zhì)得到,根據(jù)角平分線的定義得到,根據(jù)三角形內(nèi)角和定理計算即可;
(2)利用定理證明;
(3)連接,證明四邊形是矩形,得到,根據(jù)勾股定理求出即可.
(1)①∵四邊形ABCD為矩形,
∴∠ABC=∠BCD=90°,
∵BE平分∠ABC,
∴∠EBC=45°,
∴∠BEC=45°,
故答案為:45;
②△ADE≌△ECF,
理由如下:∵四邊形ABCD是矩形,
∴∠ABC=∠C=∠D=90°,AD=BC.
∵FE⊥AE,
∴∠AEF=90°.
∴∠AED+∠FEC=180°-∠AEF=90°.
∵∠AED+∠DAE=90°,
∴∠FEC=∠EAD,
∵BE平分∠ABC,
∴∠BEC=45°.
∴∠EBC=∠BEC.
∴BC=EC.
∴AD=EC.
在△ADE和△ECF中,
∴△ADE≌△ECF;
(2)連接HB,如圖2,
∵FH∥CD,
∴∠HFC=180°-∠C=90°.
∴四邊形HFCD是矩形.
∴DH=CF,
∵△ADE≌△ECF,
∴DE=CF.
∴DH=DE.
∴∠DHE=∠DEH=45°.
∵∠BEC=45°,
∴∠HEB=180°-∠DEH-∠BEC=90°.
∵NH∥BE,NB∥HE,
∴四邊形NBEH是平行四邊形.
∴四邊形NBEH是矩形.
∴NE=BH.
∵四邊形ABCD是矩形,
∴∠BAH=90°.
∵在Rt△BAH中,AB=4,AH=2,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要從甲、乙、丙、丁四名學(xué)生中選一名參加“漢字聽寫”大賽,選拔中每名學(xué)生的平均成績 及其方差s2如表所示,如果要選拔一名成績高且發(fā)揮穩(wěn)定的學(xué)生參賽,則應(yīng)選擇的學(xué)生是( )
甲 | 乙 | 丙 | 丁 | |
8.9 | 9.5 | 9.5 | 8.9 | |
s2 | 0.92 | 0.92 | 1.01 | 1.03 |
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求證:此方程總有兩個實數(shù)根;
(2)若此方程有一個根大于0且小于1,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知原點O,A(0,4),B(2,0),將△OAB繞平面內(nèi)一點P逆時針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形的兩個頂點恰好落在雙曲線 上,則旋轉(zhuǎn)中心P的坐標為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知動點P以每秒2㎝的速度沿圖甲的邊框按從的路徑移動,相應(yīng)的△ABP的面積S關(guān)于時間t的函數(shù)圖象如圖乙.若AB=6,試回答下列問題:
(1)圖甲中的BC長是多少?
(2)圖乙中的a是多少?
(3)圖甲中的圖形面積的多少?
(4)圖乙的b是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,將腰CD以點D為中心逆時針旋轉(zhuǎn)90°至ED,連結(jié)AE,CE,則△ADE的面積是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC外作△ABD和△ACE,使AD=AB,AE=AC,且∠DAB=∠EAC,連接BE,CD相交于P點,求證:點A在∠DPE的平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算或化簡
(1)計算﹣14﹣(1﹣0.5)×.
(2)計算()×(﹣36)+1+(﹣2)+|﹣2﹣3|﹣5.
(3)化簡(3a﹣2b)+(5a﹣7b)﹣2(2a﹣4b).
(4)化簡(﹣x2+2xy﹣y2)﹣2(xy﹣3x2)+3(2y2﹣xy).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com