【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點G,E為AD的中點,連結(jié)BE交AC于F,連結(jié)FD,若∠BFA=90°,則下列四對三角形:①△BEA與△ACD②△FED與△DEB③△CFD與△ABG④△ADF與△CFB中相似的為( )
A. ①④B. ①②C. ②③④D. ①②③
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD各個頂點的坐標分別為A(﹣2,8),B(﹣11,6),C(﹣14,0),D(0,0).
(1)求這個四邊形的面積;
(2)如果把四邊形ABCD各個頂點的縱坐標保持不變,橫坐標增加4,所得的四邊形的面積又是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將邊長為4的正方形ABCD置于平面直角坐標系中,使AB邊落在x軸的正半軸上且A點的坐標是,直線y=x與線段CD交于點E.
(1)直線經(jīng)過點C且與軸交于點F.求四邊形AFCD的面積.
(2)若直線經(jīng)過點E和點F,求直線的解析式.
(3)若直線經(jīng)過點且與直線平行,將(2)中直線沿著軸向上平移1個單位得到直線,直線交軸于點M,交直線于點N,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B是切點,點C是劣弧AB上的一點,若∠P=40°,則∠ACB等于( )
A. 80° B. 110° C. 120° D. 140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點A,分別過正方形的頂點B、D作BF⊥a于點F,DE⊥a于點E,若DE=8,BF=5,則EF的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是( )
A. AB=24m B. MN∥AB
C. △CMN∽△CAB D. CM:MA=1:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,點E、F、G、H分別在AB、BC、CD、DA上,且滿足AE∶BF∶CG∶DH=1∶2∶3∶4. 問當AE長為多少時,四邊形EFGH的面積最小?并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.
(1)求證:△BGF≌△FHC;
(2)設(shè)AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com