【題目】已知二次函數(shù)是常數(shù)).

1)當(dāng)時(shí),該函數(shù)的圖象與直線(xiàn)有幾個(gè)公共點(diǎn)?說(shuō)明理由;

2)若該函數(shù)的圖象與軸只有一個(gè)公共點(diǎn),求的值.

【答案】(1) 1個(gè)公共點(diǎn);(2)0-

【解析】

1)轉(zhuǎn)化為求方程組的解,即可判斷;
2)分兩種情況討論:①當(dāng)函數(shù)為一次函數(shù)時(shí),與x軸有一個(gè)交點(diǎn);
②當(dāng)函數(shù)為二次函數(shù)時(shí),利用判別式=0,轉(zhuǎn)化為方程即可解決問(wèn)題;

1m=-1時(shí), ,解得
∴該函數(shù)的圖象與直線(xiàn)y=21個(gè)公共點(diǎn).
2)①當(dāng)m=0時(shí),函數(shù)y=-4x+1的圖象與x軸只有一個(gè)交點(diǎn);
②當(dāng)m≠0時(shí),若函數(shù)y=mx2-6x-7的圖象與x軸只有一個(gè)交點(diǎn),則方程mx2-6x-7=0有兩個(gè)相等的實(shí)數(shù)根,
所以=-62-4m-7=0m=-
綜上,若函數(shù)y=mx2-4x+1的圖象與x軸只有一個(gè)交點(diǎn),則m的值為0-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=90°,∠OAB=30°,反比例函數(shù)y1=的圖象經(jīng)過(guò)點(diǎn)A,反比例函數(shù)y2=的圖象經(jīng)過(guò)點(diǎn)B,則m的值是( 。

A.m=3B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱(chēng)為點(diǎn)湘一比,記為,如點(diǎn),則

1)若在直線(xiàn)上,求點(diǎn)湘一比及直線(xiàn)軸夾角的正切值;

2)已知點(diǎn)湘一比,且上,的半徑為,若點(diǎn)上,求湘一比的取值范圍;

3)設(shè)、為正整數(shù),且,對(duì)一切實(shí)數(shù),如果直線(xiàn)與二次函數(shù)交于、,且,求點(diǎn)湘一比的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;

2請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小華在晚上由路燈A走向路燈B.當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)他身后影子的頂部剛好接觸到路燈A的底部;當(dāng)他向前再步行12m到達(dá)點(diǎn)Q時(shí),發(fā)現(xiàn)他身前影子的頂部剛好接觸到路燈B的底部.已知小華的身高是1.6m,兩個(gè)路燈的高度都是9.6m,且APQB.

(1)求兩個(gè)路燈之間的距離;

(2)當(dāng)小華走到路燈B的底部時(shí),他在路燈A下的影長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個(gè)等腰直角三角形AOB,∠OAB= 90° ,直角邊AOx軸上,且AO= 1. RtAOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90° 得到等腰直角三角形A1OB1,且A1O= 2AO,再將RtA1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A2OB2,且A2O=2A1O......依此規(guī)律,得到等腰直角三角形A2018OB2018 ,則點(diǎn)A2018的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上.

1)把ABC向上平移5個(gè)單位后得到對(duì)應(yīng)的A1B1C1,畫(huà)出A1B1C1;

2)畫(huà)出與ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的A2B2C2;

3A1B1C1A2B2C2關(guān)于某個(gè)點(diǎn)對(duì)稱(chēng),則這個(gè)點(diǎn)的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿(mǎn).當(dāng)每個(gè)房間 每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x10的正整數(shù)倍).

1)設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

2)設(shè)賓館一天的利潤(rùn)為w元,求wx的函數(shù)關(guān)系式;

3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案