【題目】在平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱(chēng)為點(diǎn)湘一比,記為,如點(diǎn),則

1)若在直線(xiàn)上,求點(diǎn)湘一比及直線(xiàn)軸夾角的正切值;

2)已知點(diǎn)湘一比,且上,的半徑為,若點(diǎn)上,求湘一比的取值范圍;

3)設(shè)、為正整數(shù),且,對(duì)一切實(shí)數(shù),如果直線(xiàn)與二次函數(shù)交于、,且,求點(diǎn)湘一比的值.

【答案】1;(2;(3

【解析】

1)根據(jù)湘一比的定義求出a的值,即可得出結(jié)論;
2)先確定出點(diǎn)Q的坐標(biāo),進(jìn)而判斷出直線(xiàn)OM和⊙Q相切時(shí),兩種情況即可得出kM的最大值和最小值,就是分界點(diǎn),即可得出結(jié)論;
3)先求出x1=-3x2=mt,進(jìn)而建立不等式組,得出m2且(mn-62≤0,即可得出結(jié)論.

解:(1) 在直線(xiàn)上,

,

,此時(shí)直線(xiàn)軸夾角的正切值為

(2)由題意知,

上,

(),

根據(jù)點(diǎn)縱橫比知,直線(xiàn)相切時(shí),一個(gè)是的最大值和另一個(gè)是最小值,

當(dāng) 時(shí), 最小, 此時(shí)

當(dāng)時(shí),最大,此時(shí),

(3)由題意知,,

,

,

,

∵等于一切實(shí)數(shù)不等式恒成立,

,

為正整數(shù),

為正整數(shù),

,,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10元/件,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量(件與銷(xiāo)售價(jià)(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)求之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

(2)求每天的銷(xiāo)售利潤(rùn)W(元與銷(xiāo)售價(jià)(元/件)之間的函數(shù)關(guān)系式,并求出每件銷(xiāo)售價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O為等腰三角形ABC的外接圓,AB是⊙O的直徑,AB=12,P上任意一點(diǎn)(不與點(diǎn)BC重合),直線(xiàn)CPAB的延長(zhǎng)線(xiàn)于點(diǎn)Q,⊙O在點(diǎn)P處的切線(xiàn)PDBQ于點(diǎn)D,則下列結(jié)論:①若∠PAB=30°,則的長(zhǎng)為π;②若PDBC,則AP平分∠CAB;③若PB=BD,則PD=6;④無(wú)論點(diǎn)P上的位置如何變化,CPCQ=108.其中正確結(jié)論的序號(hào)為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)黨的精準(zhǔn)扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20/噸和25/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15/噸和24/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少?lài)嵎柿希?/span>

(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).

(3)由于更換車(chē)型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a0)中的x與y的部分對(duì)應(yīng)值如表

x

1

0

1

3

y

1

3

5

3

下列結(jié)論:

ac<0;

當(dāng)x>1時(shí),y的值隨x值的增大而減。

3是方程ax2+(b1)x+c=0的一個(gè)根;

當(dāng)1<x<3時(shí),ax2+(b1)x+c>0.

其中正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.則下列說(shuō)法正確的是________.(寫(xiě)出所有正確說(shuō)法的序號(hào))

①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;

②當(dāng)x=﹣2.1時(shí),[x]+(x)+[x)=﹣7;

③方程4[x]+3x)+[x)=11的解為1x1.5;

④當(dāng)﹣1x1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個(gè)交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)是常數(shù)).

1)當(dāng)時(shí),該函數(shù)的圖象與直線(xiàn)有幾個(gè)公共點(diǎn)?說(shuō)明理由;

2)若該函數(shù)的圖象與軸只有一個(gè)公共點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷(xiāo)售某種家用空氣凈化器,其進(jìn)價(jià)是200/臺(tái).經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300/臺(tái),代理銷(xiāo)售商每月要完成不低于450臺(tái)的銷(xiāo)售任務(wù).

1)試確定月銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)O為對(duì)角線(xiàn)ACBD的交點(diǎn),點(diǎn)E為邊AB的中點(diǎn),△BED繞著點(diǎn)B旋轉(zhuǎn)至△BD1E1,如果點(diǎn)D、E、D1在同一直線(xiàn)上,那么EE1的長(zhǎng)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案