【題目】解方程:
(1)
(2)
(3)
【答案】(1)x=2;(2)x=12;(3)x=-17.
【解析】
(1)根據(jù)解一元一次方程的步驟求解即可;
(2)先去括號、再移項(xiàng)、合并同類項(xiàng),系數(shù)化為1即可;
(3)先去分母,去括號、再移項(xiàng)、合并同類項(xiàng),系數(shù)化為1即可.
(1)移項(xiàng)得,2x+x=1+5,
合并同類項(xiàng),得3x=6,
系數(shù)化為1,得x=2;
(2)去括號得,6x+15=8x-6-3,
移項(xiàng)得,6x-8x=-6-3-15,
合并同類項(xiàng),得-2x=-24,
系數(shù)化為1得,x=12;
(3)去分母,得3(x-1)-12=2(2x+1),
去括號得,3x-3-12=4x+2,
移項(xiàng)得,3x-4x=2+3+12,
合并同類項(xiàng),-x=17,
系數(shù)化為1,x=-17.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張直角三角形紙片沿斜邊上的中線剪開,得到,再將沿方向平移到的位置,若從平移開始到點(diǎn)未到達(dá)點(diǎn)時(shí),交于點(diǎn),交于點(diǎn),連結(jié).
(1)試探究的形狀,請說明理由;
(2)當(dāng)四邊形為菱形時(shí),判斷與是否全等,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步推廣“陽光體育”大課間活動(dòng),某中學(xué)對已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請結(jié)合圖中的信息解答下列問題:
(1)請計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b交x軸于點(diǎn)A(1,0),與雙曲線y=-(x<0)交于點(diǎn)B(-1,a).
(1)求直線AB的解析式;
(2)若點(diǎn)B左側(cè)一直線x=m與直線AB交于點(diǎn)C,與雙曲線交于點(diǎn)D(C、D兩點(diǎn)不重合),當(dāng)BC=BD時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)問題:用邊長相等的正三角形、正方形和正六邊形能否進(jìn)行平面圖形的鑲嵌?
問題探究:為了解決上述數(shù)學(xué)問題,我們采用分類討論的思想方法去進(jìn)行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進(jìn)行平面圖形的鑲嵌?
第一類:選正三角形.因?yàn)檎切蔚拿恳粋(gè)內(nèi)角是60°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有6個(gè)正三角形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形可以進(jìn)行平面圖形的鑲嵌.
第二類:選正方形.因?yàn)檎叫蔚拿恳粋(gè)內(nèi)角是90°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有4個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正方形也可以進(jìn)行平面圖形的鑲嵌.
第三類:選正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進(jìn)行平面圖形的鑲嵌?
第四類:選正三角形和正方形
在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正三角形和y個(gè)正方形的內(nèi)角可以拼成個(gè)周角.根據(jù)題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數(shù)解為.
鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著3個(gè)正三角形和2個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形和正方形可以進(jìn)行平面鑲嵌
第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)
第六類:選正方形和正六邊形,(不寫探究過程,只寫出結(jié)論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結(jié)論),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD相交于點(diǎn)O,∠CAB=∠ACB,過點(diǎn)B作BE⊥AB交AC于點(diǎn)E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,分別是兩棵樹及其影子的情形
(1)哪個(gè)圖反映了陽光下的情形?哪個(gè)圖反映了路燈下的情形.
(2)請畫出圖中表示小麗影長的線段.
(3)陽光下小麗影子長為1.20m樹的影子長為2.40m,小麗身高1.88m,求樹高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義新知)在數(shù)軸上,點(diǎn)M和點(diǎn)N分別表示數(shù)x1和x2 ,可以用絕對值表示點(diǎn)M、N兩點(diǎn)間的距離d (M,N),即d (M,N)=|x1-x2|.
(初步應(yīng)用)
(1)在數(shù)軸上,點(diǎn)A、B、C分別表示數(shù)-1、2、x, 解答下列問題:
①d (A,B)= ;
②若d(A,C)=2,則x的值為 ;
③若d(A,C)+d(B,C)=d(A,B),且x為整數(shù),則x的取值有 個(gè).
(綜合應(yīng)用)
(2)在數(shù)軸上,點(diǎn)D、E、F分別表示數(shù)-2、4、6.動(dòng)點(diǎn)P沿?cái)?shù)軸從點(diǎn)D開始運(yùn)動(dòng),到達(dá)F點(diǎn)后立刻返回,再回到D點(diǎn)時(shí)停止運(yùn)動(dòng).在此過程中,點(diǎn)P的運(yùn)動(dòng)速度始終保持每秒2個(gè)單位長度.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)t= 時(shí),d(D,P)=3;
②在整個(gè)運(yùn)動(dòng)過程中,請用含t的代數(shù)式表示d(E,P).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com