【題目】如圖,△ABE中,點(diǎn)A、B是反比例函數(shù)y=(k≠0)圖象上的兩點(diǎn),點(diǎn)E在x軸上,延長(zhǎng)線段AB交y軸于點(diǎn)C,點(diǎn)B恰為線段AC中點(diǎn),過點(diǎn)A作AD⊥x軸于點(diǎn)D.若S△ABE=,DE=2OE,則k的值為( 。
A.6B.﹣6C.9D.﹣9
【答案】B
【解析】
根據(jù)題意設(shè)A(2a,b),則B(a,2b),E(,0),作BM⊥x軸于M,根據(jù)S△ABE=S梯形ABMD+S△BME﹣S△ADE,得出﹣ab=,求得ab=-3,即可求出k=2ab=﹣6.
解:∵點(diǎn)A、B是反比例函數(shù)y=(k≠0)圖象上的兩點(diǎn),點(diǎn)B恰為線段AC中點(diǎn),
∴設(shè)A(2a,b),則B(a,2b),
∴k=2ab,
∵DE=2OE,
∴E(,0),
作BM⊥x軸于M,
∵S△ABE=S梯形ABMD+S△BME﹣S△ADE,S△ABE=,
∴(﹣a)(b+2b)+ (﹣a)2b﹣(﹣2a)b=,
整理得﹣ab=,
解得ab=﹣3,
∴k=2ab=﹣6.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為,且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的表達(dá)式及A,B兩點(diǎn)的坐標(biāo).
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值;若不存在,請(qǐng)說明理由;
(3)在以AB為直徑的⊙M中,CE與⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】C,D兩城蔬菜緊缺,A,B兩城決定支援,A城有蔬菜20噸,B城有蔬菜40噸,C城需要蔬菜16噸,D城需要蔬菜44噸,已知A到C,D的運(yùn)輸費(fèi)用分別為200元/噸,220元/噸,B到C,D的運(yùn)輸費(fèi)用分別為300元/噸,340元/噸,規(guī)定A向C城運(yùn)的噸數(shù)不小于B向C城運(yùn)的噸數(shù),設(shè)A城向C城運(yùn)x噸,請(qǐng)回答下列問題:
(1)根據(jù)題意條件,填寫下列表格:
(2)設(shè)總費(fèi)用為y(元),求出y(元)與x(噸)的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)怎樣調(diào)運(yùn)貨物能使總費(fèi)用最少?最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)國(guó)務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房的建設(shè)力度.2016年市政府共投資2億元人民幣建設(shè)了廉租房8萬平方米,預(yù)計(jì)到2018年底三年累計(jì)投資9.5億元人民幣建設(shè)廉租房,若在這兩年內(nèi)每年投資的增長(zhǎng)率相同.
(1)求每年市政府投資的增長(zhǎng)率;
(2)若這兩年內(nèi)的建設(shè)成本不變,求到2018年底共建設(shè)了多少萬平方米廉租房.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點(diǎn);②a﹣b+c<0;③4a+b+c=0;④拋物線的頂點(diǎn)坐標(biāo)為(2,b);⑤當(dāng)x<1時(shí),y隨x增大而增大.其中結(jié)論正確的是( 。
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E為線段BC上一點(diǎn),AE交CD于G,且GC=GE,EF⊥BC交AB于點(diǎn)F.
(1)求證:AE2=AFAB;
(2)連FG,若BE=2CE,求tan∠AFG;
(3)如圖2,當(dāng)tanB= 時(shí),CE=FE(請(qǐng)直接寫出結(jié)果,不需要解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】恒昌路是一條東西走向的馬路,有市場(chǎng)、醫(yī)院、車站、學(xué)校四家公共場(chǎng)所。已知市場(chǎng)在醫(yī)院東200米,車站在市場(chǎng)東150米,醫(yī)院在學(xué)校東450米。若將馬路近似的看成一條直線,以醫(yī)院為原點(diǎn),向東方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示100米,
(1)在數(shù)軸上表示出四家公共場(chǎng)所的位置;
(2)列式計(jì)算學(xué)校與車站之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.如圖,已知AB∥CD,∠B=∠C,
求證:∠1=∠2.
證明:∵AB∥CD(已知)
∴∠B= ( ).
∵∠B=∠C(已知)
∴∠BFD=∠C(等量代換)
∴EC∥ ( )
∴∠2= (兩直線平行,同位角相等)
∵∠1= ( )
∴∠1=∠2(等量代換).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com