【題目】如圖1,拋物線過(guò)點(diǎn)A(10),B(40),與y軸相交于點(diǎn)C

1)求拋物線的解析式;

2)在x軸正半軸上存在點(diǎn)E,使得△BCE是等腰三角形,請(qǐng)求出點(diǎn)E的坐標(biāo);

3)如圖2,點(diǎn)D是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)DDMBC于點(diǎn)M,是否存在點(diǎn)D,使得△CDM中的某個(gè)角恰好等于∠ABC2倍?若存在,請(qǐng)求出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2;(3)存在,2

【解析】

1)根據(jù)點(diǎn)A,B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;
2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),結(jié)合點(diǎn)B的坐標(biāo)可得出BC的長(zhǎng),設(shè)點(diǎn)E的坐標(biāo)為(m0),分BE=BCCE=BE兩種情況考慮:①當(dāng)BE=BC時(shí),由BE=2結(jié)合點(diǎn)B的坐標(biāo)可得出點(diǎn)E的坐標(biāo);②當(dāng)CE=BE時(shí),在RtOCE中利用勾股定理可得出關(guān)于m的一元一次方程,解之即可得出m的值,進(jìn)而可得出點(diǎn)E的坐標(biāo);
3)分∠DCM=2ABC及∠CDM=2ABC兩種情況考慮:①當(dāng)∠DCM=2ABC時(shí),取點(diǎn)F0-2),連接BF,則CDBF,由點(diǎn)B,F的坐標(biāo),利用待定系數(shù)法可求出直線BF,CD的解析式,聯(lián)立直線CD及拋物線的解析式成方程組,通過(guò)解方程組可求出點(diǎn)D的坐標(biāo);②當(dāng)∠CDM=2ABC時(shí),過(guò)點(diǎn)CCNBF于點(diǎn)N,作點(diǎn)N關(guān)于BC的對(duì)稱(chēng)點(diǎn)P,連接NPBC于點(diǎn)Q,利用待定系數(shù)法及垂直的兩直線一次項(xiàng)系數(shù)乘積為-1可求出直線CN的解析式,聯(lián)立直線BF及直線CN成方程組,通過(guò)解方程組可求出點(diǎn)N的坐標(biāo),利用對(duì)稱(chēng)的性質(zhì)可求出點(diǎn)P的坐標(biāo),由點(diǎn)CP的坐標(biāo),利用待定系數(shù)法可求出直線CP的解析式,將直線CP的解析式代入拋物線解析式中可得出關(guān)于x的一元二次方程,解之取其非零值可得出點(diǎn)D的橫坐標(biāo).綜上,此題得解.

解:(1). ∵拋物線過(guò)點(diǎn),

解得

∴二次函數(shù)的表達(dá)式為:

2)拋物線,

當(dāng)時(shí), 當(dāng)時(shí),

,,

,

①當(dāng)時(shí),如圖1,點(diǎn)是線段的中垂線與軸的交點(diǎn),

設(shè),則,在RTOCE中,

,解得,

②當(dāng)時(shí),

3)分兩種情況考慮:


①當(dāng)∠DCM=2ABC時(shí),取點(diǎn)F0,-2),連接BF,如圖4所示.
OC=OF,OBCF
∴∠ABC=ABF,
∴∠CBF=2ABC
∵∠DCB=2ABC,
∴∠DCB=CBF
CDBF
∵點(diǎn)B4,0),F0,-2),
∴直線BF的解析式為y=x-2,
∴直線CD的解析式為y=x+2
聯(lián)立直線CD及拋物線的解析式成方程組,得: ,
解得: (舍去), ,
∴點(diǎn)D的坐標(biāo)為(23);
②當(dāng)∠CDM=2ABC時(shí),過(guò)點(diǎn)CCNBF于點(diǎn)N,作點(diǎn)N關(guān)于BC的對(duì)稱(chēng)點(diǎn)P,連接NPBC于點(diǎn)Q,如圖5所示.


設(shè)直線CN的解析式為y=kx+ck≠0),
∵直線BF的解析式為y=x-2CNBF,
k=-2
又∵點(diǎn)C0,2)在直線CN上,
∴直線CN的解析式為y=-2x+2
連接直線BF及直線CN成方程組,得:
解得:,
∴點(diǎn)N的坐標(biāo)為().
∵點(diǎn)B4,0),C0,2),
∴直線BC的解析式為y=-x+2
NPBC,且點(diǎn)N),
∴直線NP的解析式為y=2x-
聯(lián)立直線BC及直線NP成方程組,得:,
解得:
∴點(diǎn)Q的坐標(biāo)為().
∵點(diǎn)N),點(diǎn)N,P關(guān)于BC對(duì)稱(chēng),
∴點(diǎn)P的坐標(biāo)為().
∵點(diǎn)C02),P),
∴直線CP的解析式為y=x+2
y=x+2代入y=-x+2整理,得:11x2-29x=0,
解得:x1=0(舍去),x2=
∴點(diǎn)D的橫坐標(biāo)為
綜上所述:存在點(diǎn)D,使得△CDM的某個(gè)角恰好等于∠ABC2倍,點(diǎn)D的橫坐標(biāo)為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“只要人人都獻(xiàn)出一點(diǎn)愛(ài),世界將變成美好的人間”,在新型肺炎疫情期間,全國(guó)人民萬(wàn)眾一心,眾志成城,共克時(shí)艱.某社區(qū)積極發(fā)起“援鄂捐款”活動(dòng)倡議,有2500名居民踴躍參與獻(xiàn)愛(ài)心.社區(qū)管理員隨機(jī)抽查了部分居民捐款情況,統(tǒng)計(jì)圖如圖:

1)計(jì)算本次共抽查居民人數(shù),并將條形圖補(bǔ)充完整;

2)根據(jù)統(tǒng)計(jì)情況,請(qǐng)估計(jì)該社區(qū)捐款20元以上(含20元)的居民有多少人?

3)該社區(qū)有1名男管理員和3名女管理員,現(xiàn)要從中隨機(jī)挑選2名管理員參與“社區(qū)防控”宣講活動(dòng),請(qǐng)用列表法或樹(shù)狀圖法求出恰好選到“11女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=3BC=1,點(diǎn)D是斜邊上一點(diǎn),且AD=4BD

(1)tanBCD的值;

(2)過(guò)點(diǎn)B的⊙O與邊AC相切,切點(diǎn)為AC的中點(diǎn)E,⊙O與直線BC的另一個(gè)交點(diǎn)為F

()求⊙O的半徑;

() 連接AF,試探究AFCD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,34的小球,它們的形狀、大小、質(zhì)地等完全相同.小米先從盒子中隨機(jī)取出一個(gè)小球,記下數(shù)字為x,且不放回盒子,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y

1)用列表法或畫(huà)樹(shù)狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;

2)求小米、小華各取一次小球所確定的點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(14)和(3,0),點(diǎn)Cy軸上的一個(gè)動(dòng)點(diǎn),且AB,C三點(diǎn)不在同一條直線上,當(dāng)△ABC的周長(zhǎng)最小時(shí),點(diǎn)C的坐標(biāo)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加一個(gè)知識(shí)競(jìng)賽,該競(jìng)賽試題由10道選擇題構(gòu)成,每小題有四個(gè)選項(xiàng),且只有一個(gè)選項(xiàng)正確.其給分標(biāo)準(zhǔn)為:答對(duì)一題得2分,答錯(cuò)一題扣1分,不答得0分,若10道題全部答對(duì)則額外獎(jiǎng)勵(lì)5分.小明對(duì)其中的8道題有絕對(duì)把握答對(duì),剩下2道題完全不知道該選哪個(gè)選項(xiàng).

1)對(duì)于剩下的2道題,若小明都采用隨機(jī)選擇一個(gè)選項(xiàng)的做法,求兩小題都答錯(cuò)的概率;

2)從預(yù)期得分的角度分析,采用哪種做法解答剩下2道題更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李老師為了了解班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)九(1)班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類(lèi),A:特別好;B:好;C;一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)本次調(diào)查中,李老師一共調(diào)查了   名同學(xué),其中女生共有   名.

2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)為了共同進(jìn)步,李老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)求所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位在疫情期間用3000元購(gòu)進(jìn)A、B兩種口罩1100個(gè),購(gòu)買(mǎi)A種口罩與購(gòu)買(mǎi)B種口罩的費(fèi)用相同,且A種口罩的單價(jià)是B種口罩單價(jià)的1.2倍;

1)求A,B兩種口罩的單價(jià)各是多少元?

2)若計(jì)劃用不超過(guò)7000元的資金再次購(gòu)進(jìn)AB兩種口罩共2600個(gè),已知AB兩種口罩的進(jìn)價(jià)不變,求A種口罩最多能購(gòu)進(jìn)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某學(xué)校高中兩個(gè)班的學(xué)生上學(xué)時(shí)步行、騎車(chē)、乘公交、乘私家車(chē)人數(shù)的扇形統(tǒng)計(jì)圖,已知乘公交人數(shù)是乘私家車(chē)人數(shù)的2.若步行人數(shù)是18人,則下列結(jié)論正確的是( )

A. 被調(diào)查的學(xué)生人數(shù)為90

B. 乘私家車(chē)的學(xué)生人數(shù)為9

C. 乘公交車(chē)的學(xué)生人數(shù)為20

D. 騎車(chē)的學(xué)生人數(shù)為16

查看答案和解析>>

同步練習(xí)冊(cè)答案