【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(14)和(3,0),點(diǎn)Cy軸上的一個(gè)動(dòng)點(diǎn),且A,B,C三點(diǎn)不在同一條直線上,當(dāng)△ABC的周長(zhǎng)最小時(shí),點(diǎn)C的坐標(biāo)是____________

【答案】(0,3)

【解析】

由題意根據(jù)軸對(duì)稱做最短路線得出AE=BE,進(jìn)而得出BO=CO,即可得出△ABC的周長(zhǎng)最小時(shí)C點(diǎn)坐標(biāo).

解:作B點(diǎn)關(guān)于y軸對(duì)稱點(diǎn)B′點(diǎn),連接AB′,交y軸于點(diǎn)C′,

此時(shí)△ABC的周長(zhǎng)最小,

∵點(diǎn)AB的坐標(biāo)分別為(1,4)和(3,0),

B′點(diǎn)坐標(biāo)為:(-3,0),AE=4,

BE=4,即BE=AE

COAE,

BO=CO=3,

∴點(diǎn)C′的坐標(biāo)是(0,3),此時(shí)△ABC的周長(zhǎng)最。

故答案為:(03).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在新冠疫情防控期間,某醫(yī)療器械商業(yè)集團(tuán)新進(jìn)了40臺(tái)A型電子體溫測(cè)量?jī)x,60臺(tái)B型電子體溫測(cè)量?jī)x,計(jì)劃調(diào)配給下屬的甲、乙兩個(gè)連鎖店銷售,其中70臺(tái)給甲連鎖店,30臺(tái)給乙連鎖店.兩個(gè)連鎖店銷售這兩種測(cè)量?jī)x每臺(tái)的利潤(rùn)()如下表:

A

B

甲連鎖店

200

170

乙連鎖店

160

150

設(shè)集團(tuán)調(diào)配給甲連鎖店臺(tái)A型測(cè)量?jī)x,集團(tuán)賣出這100臺(tái)測(cè)量?jī)x的總利潤(rùn)為()

1)求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍:

2)為了促銷,集團(tuán)決定僅對(duì)甲連鎖店的A型測(cè)量?jī)x每臺(tái)讓利元銷售,其他的銷售利潤(rùn)不變,并且讓利后每臺(tái)A型測(cè)量?jī)x的利潤(rùn)仍然高于甲連鎖店銷售的每臺(tái)B型測(cè)量?jī)x的利潤(rùn),問該集團(tuán)應(yīng)該如何設(shè)計(jì)調(diào)配方案,使總利潤(rùn)達(dá)到最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在弧AB上點(diǎn)C處,折痕交OA于點(diǎn)D,則圖中陰影部分的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于O,ABO的直徑,弦CDAB交于點(diǎn)E,連接AD,過點(diǎn)A作直線MN,使∠MAC=∠ADC

1)求證:直線MNO的切線.

2)若sinADC,AB8AE3,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)作圖:作∠MON的平分線OE,在OE上任取一點(diǎn)A,過AABOM,ACON,連接BCOAD.(只保留作圖痕跡)

2BCOA的位置關(guān)系是什么?請(qǐng)加以證明.

3)若OA=8,AC=5,則BD是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線過點(diǎn)A(1,0)B(4,0),與y軸相交于點(diǎn)C

1)求拋物線的解析式;

2)在x軸正半軸上存在點(diǎn)E,使得△BCE是等腰三角形,請(qǐng)求出點(diǎn)E的坐標(biāo);

3)如圖2,點(diǎn)D是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn).過點(diǎn)DDMBC于點(diǎn)M,是否存在點(diǎn)D,使得△CDM中的某個(gè)角恰好等于∠ABC2倍?若存在,請(qǐng)求出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖像經(jīng)過點(diǎn)M,n),點(diǎn)Nn),交y軸于點(diǎn)A

1)求a,b滿足的關(guān)系式;

2)若拋物線上始終存在不重合的P,Q兩點(diǎn)(PQ的左邊)關(guān)于原點(diǎn)對(duì)稱.

①求a的取值范圍;

②若點(diǎn)A,P,Q三點(diǎn)到直線l:的距離相等,求線段PQ長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個(gè)概念描述車流的基本特征,其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時(shí))指通過道路指定斷面的車輛速度,密度k(輛/千米)指通過道路指定斷面單位長(zhǎng)度內(nèi)的車輛數(shù).

為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量q與速度v之間關(guān)系的部分?jǐn)?shù)據(jù)如下表:

速度v(千米/小時(shí))

……

5

10

20

32

40

48

……

流量q(輛/小時(shí))

……

550

1000

1600

1792

1600

1152

……

1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是___________.(只填上正確答案的序號(hào))

q=90v+100;②q=;③q=2v2+120v

2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速度為多少時(shí),流量達(dá)到最大?最大流量是多少?

3)已知q,v,k滿足q=vk,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題.

①市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng)18≤v≤28該路段不會(huì)出現(xiàn)交通擁堵現(xiàn)象.試分析當(dāng)車流密度k在什么范圍時(shí),該路段不會(huì)出現(xiàn)交通擁堵現(xiàn)象;

②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,當(dāng)d=25米時(shí)請(qǐng)求出此時(shí)的速度v

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知以ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為弧BE的中點(diǎn),連接AD交OE于點(diǎn)F,若AC=FC

(Ⅰ)求證:AC是O的切線;

(Ⅱ)若BF=5,DF=,求O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案