【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2.則∠BCD= °,cos∠MCN= .
【答案】120 ;
【解析】
試題分析:∵在四邊形ABCD中, AB⊥BC,AD⊥CD,∠BAD=60°, ∴∠BCD=360°-90°-90°-60°=120°;
連接MN,連接AC,
∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,∵∠MAN=60°,∴△MAN是等邊三角形,∴MN=AM=AN=2,
∵在Rt△ABC與Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=,
在Rt△BMC中,CM==,
過(guò)M點(diǎn)作ME⊥ON于E,設(shè)NE=x,則CE=-x,
∴MN2-NE2=MC2-EC2,即4-x2=()2-(-x)2,
解得:x=,∴EC=-=,∴cos∠MCN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O交BC于點(diǎn)D,∠DAC=∠B.
(1)求證:CA是⊙O的切線.
(2)在AB上取一點(diǎn)E,若∠BCE=∠B,AB=2AC,求tan∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某果農(nóng)在其承包的果園中種植了60棵桔子樹,每棵桔子樹的產(chǎn)量是100kg,果農(nóng)想增加桔子樹的棵數(shù)來(lái)增產(chǎn),但增加果樹會(huì)導(dǎo)致每棵樹的光照減少,使得單棵果樹產(chǎn)量減少,試驗(yàn)發(fā)現(xiàn)每增加1棵桔子樹,單棵桔子樹的產(chǎn)量減少0.5kg.
(1)在投入成本最低的情況下,增加多少棵桔子樹時(shí),可以使果園總產(chǎn)量達(dá)到6650kg?
(2)設(shè)增加x棵桔子樹,考慮實(shí)際增加桔子樹的情況,10≤x≤40,請(qǐng)你計(jì)算一下,果園總產(chǎn)量最多為多少kg,最少為多少kg?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1:y=2(x﹣3)2+1和拋物線y2:y=﹣2x2﹣8x﹣3,若無(wú)論k取何值,直線y=kx+km+n被兩條拋物線所截的兩條線段都保持相等,則m=_____,n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),且與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是3.
(1)求一次函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)寫出不等式kx+b>﹣的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)有研發(fā)、管理和操作三個(gè)小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說(shuō)法中不正確的是( )
操作組 | 管理組 | 研發(fā)組 | |
日工資(元/人) | 260 | 280 | 300 |
人數(shù)(人) | 4 | 4 | 4 |
A.團(tuán)隊(duì)平均日工資不變B.團(tuán)隊(duì)日工資的方差不變
C.團(tuán)隊(duì)日工資的中位數(shù)不變D.團(tuán)隊(duì)日工資的極差不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)F是上一點(diǎn),連接AF交CD的延長(zhǎng)線于點(diǎn)E.
(1)求證:△AFC∽△ACE;
(2)若AC=5,DC=6,當(dāng)點(diǎn)F為的中點(diǎn)時(shí),求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,問(wèn):在BC上是否存在點(diǎn)P,使得AP⊥PD?若存在,求出BP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑作,點(diǎn)D在上,,,垂足為點(diǎn)E,與和分別交于點(diǎn)M、F.連接、、.
(1)證明:是的切線;
(2)若,,求的半徑長(zhǎng);
(3)在(2)的條件下,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com