【題目】定義:四條邊都相等且四個(gè)角都是直角的四邊形叫做正方形。我校“快樂(lè)走班”數(shù)學(xué)興趣小組開(kāi)展了一次課外活動(dòng),過(guò)程如下:如圖①,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長(zhǎng)線(xiàn)于點(diǎn)Q.
(1)求證:DP=DQ;
(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線(xiàn)DE交BC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請(qǐng)猜測(cè)他的結(jié)論并予以證明;
(3)如圖③,固定三角板直角頂點(diǎn)在D點(diǎn)不動(dòng),轉(zhuǎn)動(dòng)三角板,使三角板的一邊交AB的延長(zhǎng)線(xiàn)于點(diǎn)P,另一邊交BC的延長(zhǎng)線(xiàn)于點(diǎn)Q,仍作∠PDQ的平分線(xiàn)DE交BC延長(zhǎng)線(xiàn)于點(diǎn)E,連接PE,若AB:AP=3:4,請(qǐng)幫小明算出△DEP的面積.
【答案】 (1)證明見(jiàn)解析;(2)猜測(cè):PE=QE.證明見(jiàn)解析; (3)S△DEP =.
【解析】試題分析:本題是一道幾何證明題,主要考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、勾股定理等知識(shí)點(diǎn),試題難度不大,但要注意第(3)題中認(rèn)真計(jì)算,避免出錯(cuò).
求證DP=DQ;只需證明△ADP≌△CDQ即可得到DP=DQ.解題的關(guān)鍵是找出∠PDC的兩個(gè)余角相等即∠ADP =∠CDQ,兩三角形全等的條件就具備了.
PE=QE.只需證明△PDE≌△QDE即可得到,由(1)的結(jié)論DP=DQ加上DE是∠PDQ的平分線(xiàn)易用SAS證得結(jié)論.
(3)由AB:AP=3:4,AB=6可求AP=8,BP=2;直接由(1)和(2)的結(jié)論AP=CQ、PE=QE設(shè)CE=x,則PE=8-x,利用勾股定理求得Rt△PEB的邊PE,由此可得EQ的長(zhǎng)度,這樣△DEP的面積就不難求得了.
試題解析:
(1)證明:∵四邊形ABCD是正方形
∴DA=DC,∠DAP=∠DCQ=90°
∵∠PDQ=90°
∴∠ADP+∠PDC=90°
∠CDQ+∠PDC=90°
∠ADP=∠CDQ
在△ADP與△CDQ中
∴△ADP≌△CDQ(ASA)
∴DP=DQ
(2)解:PE=QE.證明如下:
∵ DE是∠PDQ的平分線(xiàn)
∴∠PDE=∠QDE
在△PDE與△QDE中
∴△PDE≌△QDE(SAS)
∴PE=QE
(3)解:∵AB:AP=3:4,AB=6
∴AP=8,BP=2,
由(1)知:△ADP≌△CDQ 則AP=CQ=8
由(2)知:△PDE≌△QDE,PE=QE
設(shè)CE=x,則PE=QE=CQ-CE=8-x
在Rt△PEB中,BP=2,BE=6+x,PE=8-x
由勾股定理得:22+(6+x)2=(8-x)2
解得:x=
∴
∴△DEP的面積為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說(shuō)明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在坡頂B處的同一水平面上有一座紀(jì)念碑CD垂直于水平面,小明在斜坡底A處測(cè)得該紀(jì)念碑頂部D的仰角為45°,然后他沿著坡比i=5:12的斜坡AB攀行了39米到達(dá)坡頂,在坡頂B處又測(cè)得該紀(jì)念碑頂部的仰角為68°.求坡頂B到地面AE的距離和紀(jì)念碑CD的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin68°=0.9,cos68°=0.4,tan68°=2.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A,B,C三點(diǎn)的坐標(biāo)分別為(0,a)(b,0)、(b,c),其中a,b,c滿(mǎn)足關(guān)系式(3a-2b)2+=0,|c-4|≥0.
⑴求a,b,c的值;
⑵如果在第二象限內(nèi)有一點(diǎn)P(m-1,1),請(qǐng)用含m的代數(shù)式表示△AOP的面積;
⑶在⑵的條件下,m在什么范圍取值時(shí),△AOP的面積不大于△ABC的面積?請(qǐng)求出在符合條件的前提下、△AOP的面積最大時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員中進(jìn)行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績(jī)?nèi)鐖D所示.
根據(jù)圖中信息,回答下列問(wèn)題:
(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;
(2)分別計(jì)算甲、乙成績(jī)的方差,并從計(jì)算結(jié)果來(lái)分析,你認(rèn)為哪位運(yùn)動(dòng)員的射擊成績(jī)更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y= 的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整,并解決相關(guān)問(wèn)題:
(1)函數(shù)y= 的自變量x的取值范圍是;
(2)表格是y與x的幾組對(duì)應(yīng)值.
x | … | ﹣2 | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值為;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫(huà)出函數(shù)y= 的大致圖象;
(4)結(jié)合函數(shù)圖象,請(qǐng)寫(xiě)出函數(shù)y= 的一條性質(zhì): .
(5)如果方程 =a有2個(gè)解,那么a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)解答過(guò)程填空:
如圖,已知 ,那么AB與DC平行嗎?
解: 已知
________ ________(________ )
(_______ )
又 (________ )
________ 等量代換
(________ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)l1∥l2,直線(xiàn)l3和直線(xiàn)l1、l2交于點(diǎn)C和D,在直線(xiàn)CD上有一點(diǎn)P.
(1)如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問(wèn)∠PAC,∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(2)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是( )
A.m<
B.m> 且m≠2
C.m≤
D.m≥ 且m≠2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com