【題目】如圖,在△ABC中,D為BC的中點,DE⊥BC交∠BAC的平分線AE于E,EF⊥AB于F,EG⊥AC交AC的延長線于G,AB=5,AC=3.求CG.
【答案】1
【解析】
連接BE、EC,證明Rt△EFB≌Rt△EGC,得出BF=CG,證明Rt△AEF≌Rt△AEG,得AF=AG,證出2AF=AB+AC,得出AG=AF=(AB+AC)=4,即可得出答案.
解:連接BE、EC.
∵D為BC的中點,
∴BD=DC,
∵DE⊥BC,
∴EB=EC,
∵AE平分∠BAC,EF⊥AB,EG⊥AC,
∴EF=EG,
在Rt△EFB和Rt△EGC中,,
∴Rt△EFB≌Rt△EGC(HL),
∴BF=CG.
在Rt△AEF和Rt△AEG中,,
∴Rt△AEF≌Rt△AEG(HL),
∴AF=AG,
∴AB+AC=AF+BF+AG﹣CG=2AF.
即2AF=AB+AC,
∴AG=AF=(AB+AC)=(5+3)=4,
∴CG=AG﹣AC=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們,學(xué)習(xí)了無理數(shù)之后,我們已經(jīng)把數(shù)的領(lǐng)域擴大到了實數(shù)的范圍,這說明我們的知識越來越豐富了!可是,無理數(shù)究竟是一個什么樣的數(shù)呢?下面讓我們在幾個具體的圖形中認(rèn)識一下無理數(shù).
(1)如圖①△ABC是一個邊長為2的等腰直角三角形,它的面積是2,把它沿著斜邊的高線剪開拼成如圖②的正方形ABCD,則這個正方形的面積也就等于正方形的面積即為2,則這個正方形的邊長就是,它是一個無理數(shù).
(2)如圖,直徑為1個單位長度的圓從原點O沿數(shù)軸向右滾動一周,圓上的一點P(滾動時與點O重合)由原點到達(dá)點O′,則OO′的長度就等于圓的周長,所以數(shù)軸上點O′代表的實數(shù)就是_____,它是一個無理數(shù).
(3)如圖,在Rt△ABC中,∠C=90°,AC=2,BC=1,根據(jù)已知可求得AB=_____,它是一個無理數(shù).好了,相信大家對無理數(shù)是不是有了更具體的認(rèn)識了,那么你也試著在圖形中作出兩個無理數(shù)吧:
①你能在6×8的網(wǎng)格圖中(每個小正方形邊長均為1),畫出一條長為的線段嗎?
②學(xué)習(xí)了實數(shù)后,我們知道數(shù)軸上的點與實數(shù)是一一對應(yīng)的關(guān)系,那么你能在數(shù)軸上找到表示-的點嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達(dá)式;
(3)在(2)的條件下,直線BC與y軸交于點D,求以點A,B,D為頂點的三角形的面積;
(4)在(3)的條件下,點A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011內(nèi)蒙古赤峰,7,3分)早晨,小張去公園晨練,下圖是他離家的距離y(千
米)與時間t(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法正確的是 ( )
A.小張去時所用的時間多于回家所用的時間B.小張在公園鍛煉了20分鐘
C.小張去時的速度大于回家的速度 D.小張去時走上坡路,回家時走下坡路
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x軸上,將Rt△AOB繞點O順時針旋轉(zhuǎn)至△RtA'OB',其中點B'落在反比例函數(shù)y=﹣的圖象上,OA'交反比例函數(shù)y=的圖象于點C,且OC=2CA',則k的值為( 。
A. 4 B. C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A、C分別在軸的負(fù)半軸、軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉(zhuǎn),使點B落在軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x<0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tan∠DOE=,,則BN的長為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28 m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=x m.若在P處有一棵樹與墻CD,AD的距離分別是15 m和6 m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為( )
A. 196 B. 195 C. 132 D. 14
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com