【題目】當ab>0時,y=ax2與y=ax+b的圖象大致是( )
A.
B.
C.
D.
【答案】D
【解析】解:根據(jù)題意,ab>0,即a、b同號,當a>0時,b>0,y=ax2與開口向上,過原點,y=ax+b過一、二、三象限;此時,沒有選項符合,當a<0時,b<0,y=ax2與開口向下,過原點,y=ax+b過二、三、四象限;此時,D選項符合,所以答案是:D.
【考點精析】掌握一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)是解答本題的根本,需要知道一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠B=60°,D、E分別為AB、BC上的點,且AE、CD交于點F.
(1)如圖1,若AE、CD為△ABC的角平分線:
①求∠AFD的度數(shù);
②若AD=3,CE=2,求AC的長;
(2)如圖2,若∠EAC=∠DCA=30°,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示,設點A,B,C所對應數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為( )
A.18B.20C.22D.24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是直角三角形,延長AB到點E,使BE=BC,在BC上取一點F,使BF=AB,連接EF.△ABC旋轉(zhuǎn)后能與△FBE重合,請回答:
(1)旋轉(zhuǎn)中心是點 ,
(2)旋轉(zhuǎn)了度,
(3)AC與EF的關(guān)系為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強學生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動.學校隨機抽取了部分學生,對他們一周的課外閱讀時間進行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:
課外閱讀時間(單位:小時) | 頻數(shù)(人數(shù)) | 頻率 |
0﹤t≤2 | 2 | 0.04 |
2﹤t≤4 | 3 | 0.06 |
4﹤t≤6 | 15 | 0.30 |
6﹤t≤8 | a | 0.50 |
t﹥8 | 5 | b |
請根據(jù)圖表信息回答下列問題:
(1)頻數(shù)分布表中的a=b=;
(2)將頻數(shù)分布直方圖補充完整;
(3)學校將每周課外閱讀時間在8小時以上的學生評為“閱讀之星”,請你估計該校2000名學生中評為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC、BD相交于點O,E為AB的中點,且DE⊥AB,AC=6,則菱形ABCD的面積是( 。
A. 18 B. 18 C. 9 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com