【題目】如圖,在ABCD中,點E為CD的中點,點F在BC上,且CF=2BF,連接AE,AF,若AF=,AE=7,tan∠EAF=,則線段BF的長為__________.
【答案】
【解析】過F作FG⊥AE于G,延長AE、BC交于H,
在Rt△AFG中,∵tan∠EAF=,∴設(shè)FG=5x,AG=2x,
由勾股定理得:()2=(2x)2+(5x)2,
∴x1=1,x2=﹣1(舍),∴AG=2,F(xiàn)G=5,
∵AE=7,∴EG=5,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∴∠D=∠DCH,∠DAE=∠H,
∵DE=EC,
∴△ADE≌△HCE,∴EH=AE=7,
Rt△FGH中,∵FG=5,GH=5+7=12,∴FH=13,
∵CF=2BF,設(shè)BF=a,則CF=2a,AD=CH=3a,
∴2a+3a=13,a=,∴BF=,
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖所示,有一座拱橋圓弧形,它的跨度AB為60米,拱高PM為18米,當(dāng)洪水泛濫到跨度只有30米時,就要采取緊急措施,若拱頂離水面只有4米,即PN=4米時,是否采取緊急措施?()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某實驗學(xué)校為了解九年級學(xué)生的身體素質(zhì)測試情況,隨機抽取了該校九年級部分學(xué)生的身體素質(zhì)測試成績作為樣本,按(優(yōu)秀),(良好),(合格),(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中“”部分所對應(yīng)的圓心角的度數(shù)為________°.
(3)我校九年級共有名學(xué)生參加了身體素質(zhì)測試,估計測試成績在良好以上(含良好)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的邊上的中線.
(1)①用尺規(guī)完成作圖:延長到點,使,連接;
② 若,求的取值范圍;
(2)如圖2,當(dāng)時,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃在總費用元的限額內(nèi),租用汽車送名學(xué)生和名教師集體參加校外實踐活動,為確保安全,每輛汽車上至少要有名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
(1)根據(jù)題干所提供的信息,確定共需租用多少輛汽車?
(2)請你給學(xué)校選擇一種最節(jié)省費用的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:如圖,點A、B在數(shù)軸上分別表示有理數(shù)a、b,則A、B兩點之間的距離可以表示為|a﹣b|.
根據(jù)閱讀材料與你的理解回答下列問題:
(1)數(shù)軸上表示3與﹣2的兩點之間的距離是 .
(2)數(shù)軸上有理數(shù)x與有理數(shù)7所對應(yīng)兩點之間的距離用絕對值符號可以表示為 .
(3)代數(shù)式|x+8|可以表示數(shù)軸上有理數(shù)x與有理數(shù) 所對應(yīng)的兩點之間的距離;若|x+8|=5,則x= .
(4)求代數(shù)式|x+1008|+|x+504|+|x﹣1007|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD的長AB=2,AB邊與x軸重合,雙曲線y=在第一象限內(nèi)經(jīng)過D點以及BC的中點E.
(1)求A點的橫坐標(biāo);
(2)連接ED,若四邊形ABED的面積為6,求雙曲線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com