【題目】如圖,在△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O(shè)為圓心的半圓分別與AB、AC邊相切于D、E兩點(diǎn),連接OD.已知BD=2,AD=3.求:
(1)tanC;
(2)圖中兩部分陰影面積的和.

【答案】
(1)解:連接OE,

∵AB、AC分別切⊙O于D、E兩點(diǎn),

∴AD⊥OD,AE⊥OE,

∴∠ADO=∠AEO=90°,

又∵∠A=90°,

∴四邊形ADOE是矩形,

∵OD=OE,

∴四邊形ADOE是正方形,

∴OD∥AC,OD=AD=3,

∴∠BOD=∠C,

∴在Rt△BOD中, ,

答:tanC=


(2)解:如圖,設(shè)⊙O與BC交于M、N兩點(diǎn),

由(1)得:四邊形ADOE是正方形,

∴∠DOE=90°,

∴∠COE+∠BOD=90°,

∵在Rt△EOC中, = ,OE=3,

∴S扇形DOM+S扇形EON=S扇形DOE= ,

∴S陰影=SBOD+SCOE﹣(S扇形DOM+S扇形EON)= ,

答:圖中兩部分陰影面積的和為


【解析】(1)連接OE,得到∠ADO=∠AEO=90°,根據(jù)∠A=90°,推出矩形ADOE,進(jìn)一步推出正方形ADOE,得出OD∥AC,OD=AD=3,∠BOD=∠C,即可求出答案;(2)設(shè)⊙O與BC交于M、N兩點(diǎn),由(1)得:四邊形ADOE是正方形,推出∠COE+∠BOD=90°,根據(jù) ,OE=3,求出 ,根據(jù)S扇形DOM+S扇形EON=S扇形DOE , 即可求出陰影部分的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華和小容都想?yún)⒓訉W(xué)校組織的數(shù)學(xué)興趣小組,根據(jù)學(xué)校分配的名額,他們兩人只能有1人參加.數(shù)學(xué)老師想出了一個(gè)主意:如圖,給他們六張卡片,每張卡片上都有一些數(shù),將化簡(jiǎn)后的數(shù)在數(shù)軸上表示出來(lái),再用“<”連接起來(lái),誰(shuí)先按照要求做對(duì),誰(shuí)就參加興趣小組,你也一起來(lái)試一試吧!

-(-2) (-1)3 -|-3| 0的相反數(shù)

①  、凇   、邸   、

-0.4的倒數(shù)  比-1大2.5的數(shù)

⑤       、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ab,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村莊計(jì)劃建造A,B兩種型號(hào)的沼氣池共20個(gè),以解決該村所有農(nóng)戶(hù)的燃料問(wèn)題.兩種型號(hào)沼氣池的占地面積和可供使用農(nóng)戶(hù)數(shù)見(jiàn)下表:

型號(hào)

占地面積

(單位:m2/個(gè)

可供使用農(nóng)戶(hù)數(shù)

(單位:戶(hù)/個(gè)

A

15

18

B

20

30

已知可供建造沼氣池的占地面積不超過(guò)365m2,該村農(nóng)戶(hù)共有492戶(hù).

(1)如何合理分配建造A,B型號(hào)沼氣池的個(gè)數(shù)才能滿(mǎn)足條件?滿(mǎn)足條件的方案有幾種?通過(guò)計(jì)算分別寫(xiě)出各種方案.

(2)請(qǐng)寫(xiě)出建造A、B兩種型號(hào)的沼氣池的總費(fèi)用y和建造A沼氣池個(gè)數(shù)x之間的函數(shù)關(guān)系式;

(3)若A型號(hào)沼氣池每個(gè)造價(jià)2萬(wàn)元,B型號(hào)沼氣池每個(gè)造價(jià)3萬(wàn)元,試說(shuō)明在(1)中的各種建造方案中,哪種建造方案最省錢(qián),最少的費(fèi)用需要多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某七年級(jí)的同學(xué)就別人幫助你時(shí),你是否會(huì)道一聲謝謝這個(gè)問(wèn)題對(duì)本班級(jí)66名同學(xué)進(jìn)行了調(diào)查,調(diào)查結(jié)果如下:

  是 有時(shí) 是    是 有時(shí) 有時(shí) 是 是 有時(shí) 有時(shí) 是 是 有時(shí)  是 有時(shí) 有時(shí) 是 有時(shí)  是 有時(shí) 有時(shí) 有時(shí) 是  是 有時(shí) 有時(shí) 否 否 有時(shí) 有時(shí) 是              是 有時(shí) 是           

(1)請(qǐng)用統(tǒng)計(jì)表整理上述數(shù)據(jù),百分比的結(jié)果精確到整數(shù).

回答內(nèi)容

劃記

人數(shù)

百分比

有時(shí)

(2)通過(guò)對(duì)這組數(shù)據(jù)的分析,你有何感想?用一句話表示即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A′B′C′,且點(diǎn)B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,則∠A′BA等于( 。

A.30°
B.35°
C.40°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,點(diǎn)EAD上,連接BE,DF∥BEBC于點(diǎn)F,AFBE交于點(diǎn)M,CEDF交于點(diǎn)N,AF,BE分別平分∠BAD,∠ABC;CE,DF分別平分∠BCD,∠ADC,則四邊形MFNE是( 。

A. 菱形 B. 矩形 C. 平行四邊形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,對(duì)角線AC,BD相交于點(diǎn)O.

(1)如圖1,點(diǎn)P是正方形ABCD外一點(diǎn),連接OP,以OP為一邊,作正方形OPMN,且邊ON與邊BC相交,連接AP,BN.

依題意補(bǔ)全圖1;

判斷APBN的數(shù)量關(guān)系及位置關(guān)系,寫(xiě)出結(jié)論并加以證明;

(2)點(diǎn)PAB延長(zhǎng)線上,且∠APO=30°,連接OP,以OP為一邊,作正方形OPMN,且邊ONBC的延長(zhǎng)線恰交于點(diǎn)N,連接CM,若AB=2,求CM的長(zhǎng)(不必寫(xiě)出計(jì)算結(jié)果,簡(jiǎn)述求CM長(zhǎng)的過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王購(gòu)買(mǎi)了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)(單位:米),解答下列問(wèn)題:

(1)用含 的代數(shù)式表示地面的總面積

(2)已知 ,且客廳面積是衛(wèi)生間面積的 倍,如果鋪 平方米地磚的平均費(fèi)用為 元,那么小王鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案