【題目】若二次函數(shù)的圖象與x軸的兩個交點和頂點構成等邊三角形,則稱這樣的二次函數(shù)的圖象為標準拋物線.如圖,自左至右的一組二次函數(shù)的圖象T1,T2,T3……是標準拋物線,且頂點都在直線y=x上,T1與x軸交于點A1(2,0),A2(A2在A1右側),T2與x軸交于點A2,A3,T3與x軸交于點A3,A4,……,則拋物線Tn的函數(shù)表達式為_____.
【答案】
【解析】
設拋物線T1,T2,T3…的頂點依次為B1,B2,B3…,連接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,過拋物線各頂點作x軸的垂線,由△A1B1A2是等邊三角形,結合頂點都在直線y=x上,可以求出,A2(4,0),進而得到T1的表達式:,同理,依次類推即可得到結果.
解:設拋物線T1,T2,T3…的頂點依次為B1,B2,B3…,連接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,過拋物線各頂點作x軸的垂線,如圖所示:
∵△A1B1A2是等邊三角形,
∴∠B1A1A2=60°,
∵頂點都在直線y=x上,設,
∴OC1=m,,
∴,
∴∠B1OC1=30°,
∴∠OB1A1=30°,
∴OA1=A1B1=2=A2B1,
∴A1C1=A1B1cos60°=1,
,
∴OC1=OA1+A1C1=3,
∴,A2(4,0),
設T1的解析式為:,
則,
∴,
∴T1:,
同理,T2的解析式為:,
T3的解析式為:,
…
則Tn的解析式為:,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)參加比賽的學生共有____名;
(2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A的坐標為(2,1),如果將線段OA繞點O逆時針方向旋轉90°,那么點A的對應點的坐標為( 。
A. (﹣1,2) B. (﹣2,1) C. (1,﹣2) D. (2,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,DE∥BC,點F在邊AC上,DF與BE相交于點G,且∠EDF=∠ABE.
求證:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC中,當頂角∠A的大小確定時,它的對邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個比值記作T(A),即,如T(60°)=1.
(1)理解鞏固:T(90°)= ,T(120°)= ;
(2)學以致用:如圖2,圓錐的母線長為9,底面直徑PQ=8,一只螞蟻從P點這沿著圓錐的側面爬行到點Q.
①求圓錐側面展開圖的扇形圓心角的數(shù);
②求螞蟻爬行的最短路徑長(精確到0.1).(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C為半圓弧上一點,在AC上取一點D,使BC=CD,連結BD并延長交⊙O于E,連結AE,OE交AC于F.
(1)求證:△AED是等腰直角三角形;
(2)如圖1,已知⊙O的半徑為.
①求的長;
②若D為EB中點,求BC的長.
(3)如圖2,若AF:FD=7:3,且BC=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出四個結論:①c>0;② 2a-b=0;③<0;④若點為函數(shù)圖象上的兩點,則y1<y2,其中,正確結論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點D在AC上,將△ABD繞點B順時針旋轉90°后得到△CBE.
(1)求∠DCE的度數(shù);
(2)當AC=4,AD:DC=1:3時,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com