【題目】如圖所示,在Rt△ABC與Rt△OCD中,∠ACB=∠DCO=90°,O為AB的中點.

(1)求證:∠B=∠ACD.
(2)已知點E在AB上,且BC2=ABBE.
(i)若tan∠ACD= ,BC=10,求CE的長;
(ii)試判定CD與以A為圓心、AE為半徑的⊙A的位置關系,并請說明理由.

【答案】
(1)

證明:∵∠ACB=∠DCO=90°,

∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,

即∠ACD=∠OCB,

又∵點O是AB的中點,

∴OC=OB,

∴∠OCB=∠B,

∴∠ACD=∠B


(2)

解:(i)∵BC2=ABBE,

,

∵∠B=∠B,

∴△ABC∽△CBE,

∴∠ACB=∠CEB=90°,

∵∠ACD=∠B,

∴tan∠ACD=tan∠B= ,

設BE=4x,CE=3x,

由勾股定理可知:BE2+CE2=BC2

∴(4x)2+(3x)2=100,

∴解得x=2 ,

∴CE=6 ;

(ii)過點A作AF⊥CD于點F,

∵∠CEB=90°,

∴∠B+∠ECB=90°,

∵∠ACE+∠ECB=90°,

∴∠B=∠ACE,

∵∠ACD=∠B,

∴∠ACD=∠ACE,

∴CA平分∠DCE,

∵AF⊥CE,AE⊥CE,

∴AF=AE,

∴直線CD與⊙A相切


【解析】(1)因為∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因為點O是Rt△ACB中斜邊AB的中點,所以OC=OB,所以∠OCB=∠B,利用等量代換可知∠ACD=∠B;(2)(i)因為BC2=ABBE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,因為tan∠ACD=tan∠B,利用勾股定理即可求出CE的值;
(ii)過點A作AF⊥CD于點F,易證∠DCA=∠ACE,所以CA是∠DCE的平分線,所以AF=AE,所以直線CD與⊙A相切.本題考查圓的綜合問題,涉及等量代換,勾股定理,相似三角形的判定與性質,銳角三角函數(shù)等知識,知識點較綜合,需要學生靈活運用所學知識解決問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個正方體的平面展開圖,標注了A字母的是正方體的正面,如果正方體的左面與右面標注的式子相等.

(1)求x的值.

(2)求正方體的上面和底面的數(shù)字和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點DAB邊上,點D到點A的距離與點D到點C的距離相等.

(1)利用尺規(guī)作圖作出點D,不寫作法但保留作圖痕跡.

(2)若ABC的底邊長5,周長為21,求BCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C是數(shù)軸上的三點,O是原點,BO=3,AB=2BO,5AO=3CO.

(1)寫出數(shù)軸上點A、C表示的數(shù);

(2)P、Q分別從A、C同時出發(fā),P以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,Q以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,M為線段AP的中點,N在線段CQ,CN=CQ.設運動的時間為t(t>0).

數(shù)軸上點M、N表示的數(shù)分別是    (用含t的式子表示);

t為何值時,M、N兩點到原點的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負,單位:km):

①接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?

②若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?

③若該出租車的計價標準為:行駛路程不超過3km收費10元,超過3km的部分按每千米加1.8元收費,在這過程中該駕駛員共收到車費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究規(guī)律,完成相關題目.

老師說:“我定義了一種新的運算,叫(加乘)運算.”

然后老師寫出了一些按照(加乘)運算的運算法則進行運算的算式:

(+5)(+2)=+7;(-3)(-5)=+8;

(-3)(+4)=-7; (+5)(-6)=-11;

0(+8)=8;(-6)0=6.

小明看了這些算式后說:“我知道老師定義的(加乘)運算的運算法則了.”

聰明的你也明白了嗎?

(1)歸納(加乘)運算的運算法則:

兩數(shù)進行(加乘)運算時,運算法則是什么.

特別地,0和任何數(shù)進行(加乘)運算,或任何數(shù)和0進行(加乘)運算運算法則是什么.

(2)計算:

①()[)].(括號的作用與它在有理數(shù)運算中的作用一致)

② 若(( ).求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某氣象臺發(fā)現(xiàn):在某段時間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知這段時間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時間有( 。
A.9天
B.11天
C.13天
D.22天

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).

(1)求拋物線的解析式;
(2)H是C關于x軸的對稱點,P是拋物線上的一點,當△PBH與△AOC相似時,求符合條件的P點的坐標(求出兩點即可);
(3)過點C作CD∥AB,CD交拋物線于點D,點M是線段CD上的一動點,作直線MN與線段AC交于點N,與x軸交于點E,且∠BME=∠BDC,當CN的值最大時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生體質,某中學在體育課中加強了學生的長跑訓練.在一次女子800米耐力測試中,小靜和小茜在校園內200米的環(huán)形跑道上同時起跑,同時到達終點;所跑的路程S(米)與所用的時間t(秒)之間的函數(shù)圖象如圖所示,則她們第一次相遇的時間是起跑后的第( 。┟

A. 80 B. 105 C. 120 D. 150

查看答案和解析>>

同步練習冊答案