【題目】在圖1,2,3中,已知,點(diǎn)為線段上的動(dòng)點(diǎn),連接,以為邊向上作菱形,且

1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),________°;

2)如圖2,連接

①填空:_________(填“>”,“<”,“=”);

②求證:點(diǎn)的平分線上;

3)如圖3,連接,,并延長的延長線于點(diǎn),當(dāng)四邊形是平行四邊形時(shí),求的值.

【答案】160°;(2)① =,②見解析;(33

【解析】

1)根據(jù)菱形的性質(zhì)計(jì)算;

2)①證明,根據(jù)角的運(yùn)算解答;

②作,的延長線于,證明,根據(jù)全等三角形的性質(zhì)得到,根據(jù)角平分線的判定定理證明結(jié)論;

3)根據(jù)直角三角形的性質(zhì)得到,證明四邊形為菱形,根據(jù)菱形的性質(zhì)計(jì)算,得到答案.

解:(1四邊形是菱形,

,

,

故答案為;

2)①四邊形是平行四邊形,

,

四邊形是菱形,,

,

故答案為;

②作,的延長線于,

,

,又,

,

,,

為等邊三角形,

,

中,

,

,又,

點(diǎn)的平分線上;

3四邊形是菱形,,

,

四邊形為平行四邊形,

,

,

,又,

,

,

四邊形為平行四邊形,

,

,

四邊形為平行四邊形,,

平行四邊形為菱形,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知AB是⊙O的直徑,弦CDAB垂足為E,PBA延長線上一點(diǎn),且CA平分∠PCD

1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;

2)連接DO并延長與⊙O相交于點(diǎn)M,若,,求AC的長;

3)如圖(2),在(2)的條件下,連接AMCD交于N,連接ON,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD,點(diǎn)FBC上的一點(diǎn),連接AF,∠FAD60°,AE平分∠FAD,交CD于點(diǎn)E,且點(diǎn)ECD的中點(diǎn),連接EF,已知AD5,CF3,則EF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過直線上一點(diǎn)軸于點(diǎn),線段交函數(shù)的圖像于點(diǎn),點(diǎn)為線段的中點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為

1)求、的值;

2)求直線與函數(shù)圖像的交點(diǎn)坐標(biāo);

3)直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,點(diǎn)在邊上,連接沿折疊,若點(diǎn)的對(duì)稱點(diǎn)的距離為,則的長為______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題呈現(xiàn)

如圖1,在邊長為1的正方形網(wǎng)格中,連接格點(diǎn)相交于點(diǎn),求的值.

方法歸納

求一個(gè)銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個(gè)直角三角形.觀察發(fā)現(xiàn)問題中不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題.比如連接格點(diǎn),可得,則,連接,那么就變換到中.

問題解決

(1)直接寫出圖1的值為_________;

(2)如圖2,在邊長為1的正方形網(wǎng)格中,相交于點(diǎn),求的值;

思維拓展

(3)如圖3,,,點(diǎn)上,且,延長,使,連接的延長線于點(diǎn),用上述方法構(gòu)造網(wǎng)格求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 點(diǎn)為矩形的邊上一點(diǎn),連接,點(diǎn)從點(diǎn)沿折線運(yùn)動(dòng)到時(shí)停止, 點(diǎn)從點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是,若點(diǎn),同時(shí)開始運(yùn)動(dòng), 設(shè)運(yùn)動(dòng)時(shí)間為,的面積為(當(dāng),, 三點(diǎn)共線時(shí),不妨設(shè)).已知之間的函數(shù)關(guān)系的圖象如圖,則下列結(jié)論中錯(cuò)誤的是(

A.B.C.當(dāng)時(shí),D.當(dāng)時(shí),是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【提出問題】

1)如圖1,在等邊ABC中,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)BC),連結(jié)AM,以AM為邊作等邊AMN,連結(jié)CN.求證:ABC=ACN

【類比探究】

2)如圖2,在等邊ABC中,點(diǎn)MBC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論ABC=ACN還成立嗎?請(qǐng)說明理由.

【拓展延伸】

3)如圖3,在等腰ABC中,BA=BC,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰AMN,使頂角AMN=ABC.連結(jié)CN.試探究ABCACN的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某旅游景區(qū)為方便游客,修建了一條東西走向的木棧道 AB ,棧道 AB 與景區(qū)道路CD 平行.在 C 處測(cè)得棧道一端 A 位于北偏西 42°方向,在 D 處測(cè)得棧道另一端 B 位于北偏西 32°方向.已知 CD 120 m , BD 80 m ,求木棧道 AB 的長度(結(jié)果保留整數(shù))

(參考數(shù)據(jù):,,,,)

查看答案和解析>>

同步練習(xí)冊(cè)答案