【題目】如圖:已知在△ABC中,∠ACB=90°,AC=BC=1,點DAB上任意一點,AEAB,且AE=BDDEAC相交于點F

1)試判斷△CDE的形狀,并說明理由.

2)是否存在點D,使AE=AF?如果存在,求出此時AD的長,如果不存在,請說明理由.

【答案】1)△CDE是等腰直角三角形,見解析;(2)存在AD=1

【解析】

(1)根據等腰直角三角形的性質求∠B=∠BAC=45°,再求出∠CAE=45°,從而得到∠B=∠CAE,再利用“邊角邊”證明△ACE和△BCD全等,根據全等三角形對應邊相等可得CD=CE,全等三角形對應角相等可得∠ACE=∠BCD,再求出∠DCE=90°,從而得解;(2)根據等腰三角形兩底角相等求出∠AEF=∠AFE=67.5°,再根據直角三角形兩銳角互余求出∠ADE=22.5",然后求出∠ADC=67.5",利用三角形的內角和定理求出∠ACD=67.5°,從而得到∠ACD=∠ADC,根據等角對等邊即可得到AD=AC.

解:(1)△CDE是等腰直角三角形.

理由如下:

∵∠ACB=90°,AC=BC,

∴∠B=∠BAC=45°,

∵AE⊥AB,

∴∠CAE=90°-45°=45°,

∴∠B=∠CAE,

在△ACE和△BCD中,,

∴△ACE≌△BCD(SAS),

∴CD=CE,∠ACE=∠BCD,

∵∠ACD+∠BCD=∠ACB=90°,

∴∠DCE=∠ACD+∠ACE=90°,

∴△CDE是等腰直角三角形;

(2)存在AD=1..

理由如下:

∵AE=AF,∠CAE=45°,

∴∠AEF=∠AFE=(180°-45°)=67.5°,.

∴∠ADE=90°-67.5°=22.5°,

∵△CDE是等腰直角三角形,

∴∠CDE=45°,

∴∠ADC=22.5°+45°=67.5°,

在△ACD中,∠ACD=180°-45°-67.5°=67.5°,

∴∠ACD=∠ADC,

∴AD=AC=1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某大學生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關系,部分數(shù)據如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.

(1)請直接寫出yx之間的函數(shù)關系式;

(2)如果每天獲得160元的利潤,銷售單價為多少元?

(3)設每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yx3的圖象與反比例函數(shù)y(k為常數(shù),且k0)的圖象交于A1,a),B兩點.

1)求反比例函數(shù)的表達式及點B的坐標;

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個反比例函數(shù)在第一象限內的圖象如圖所示,點P的圖象上,PC軸于點C,交的圖象于點A,PC軸于點D,交的圖象于點B. 當點P的圖象上運動時,以下結論:

的值不會發(fā)生變化

PAPB始終相等

④當點APC的中點時,點B一定是PD的中點.

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點DEBC上,連接ADAE,如果只添加一個條件使∠DAB=∠EAC,則添加的條件不能為( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,A(2,1),B(34),C(1,3),過點(l,0)x軸的垂線

(1)作出ABC關于直線的軸對稱圖形;

(2)直接寫出A1(___,___),B1(___,___),C1(___,___)

(3)ABC內有一點P(m,n),則點P關于直線的對稱點P1的坐標為(___,___)(結果用含m,n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,登山隊員在山腳點測得山頂點的仰角為,當沿傾斜角為的斜坡前進到達點以后,又在點測得山頂點的仰角為,山的高度________.(精確到米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b,把余下的部分剪拼成一個矩形(如圖),通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是(

A.a2-b2=a+b)(a-b

B.a+b2=a2+2ab+b2

C.a-b2=a2-2ab+b2

D.a2-ab=aa-b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人用如圖的兩個分格均勻的轉盤做游戲,游戲規(guī)則如下:分別轉動兩個轉盤,轉盤停止后,指針分別指向一個數(shù)字(若指針停止在等份線上,那么重轉一次,直到指針指向某一數(shù)字為止).用所指的兩個數(shù)字相乘,如果積是奇數(shù),則甲獲勝;如果積是偶數(shù),則乙獲勝.請你解決下列問題:

用列表格或畫樹狀圖的方法表示游戲所有可能出現(xiàn)的結果.

求甲、乙兩人獲勝的概率.

查看答案和解析>>

同步練習冊答案