【題目】如圖,△ABC的兩條中線AD、CE交于點G,且AD⊥CE.連接BG并延長與AC交于點F,若AD=9,CE=12,則GF為

【答案】5
【解析】解:∵點G是△ABC的兩條中線AD、CE的交點,
∴點G是△ABC的重心,
∴AG= AD=6,CG= CE=8,
∵AD⊥CE,
∴AC= =10,
∵點G是△ABC的重心,
∴點F是AC的中點,
∴GF= AC=5,
所以答案是:5.
【考點精析】解答此題的關(guān)鍵在于理解三角形的“三線”的相關(guān)知識,掌握1、三角形角平分線的三條角平分線交于一點(交點在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(交點在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】20028月在北京召開的國際數(shù)學家大會會標取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖).如果大正方形的面積是100,小正方形的面積是4,直角三角形較短的直角邊長為,較長的直角邊長為,那么的值是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,P是對角線BD上一點,連接AP、,BFAPH,CP、BH延長線分別交AD邊于點E、F。

(1)求證:∠DAP=DCE

(2)求證:AE=FD

(3)猜想∠APE與∠FBD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AB=6,BC=8,E是邊AD上的點,以CE為折痕折疊紙片,使點D落在點F處,連接FC,當AEF為直角三角形時,DE的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

(1)畫出△ABC關(guān)于x軸對稱的圖形△A1B1C1

(2)寫出頂點A1,B1,C1的坐標;

(3)若正方形網(wǎng)格每兩個格點間為一個單位長度,求△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某學習小組在探究三角形全等時,發(fā)現(xiàn)了下面這種典型的基本圖形.如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線L經(jīng)過點A,BD⊥直線L,CE⊥直線L,垂足分別為點D、E.證明:DE=BD+CE.

(2)組員小劉想,如果三個角不是直角,那結(jié)論是否會成立呢?如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線L上,并且有∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3)數(shù)學老師贊賞了他們的探索精神,并鼓勵他們運用這個知識來解決問題:如圖③,過△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,AHBC邊上的高,延長HAEG于點I,求證:IEG的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于點D;CE平分∠ACB,交AB于點E,交BD于點F.

(1)求證:△BEF是等腰三角形;

2)求證:BD=BC+BF).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:=﹣10;②數(shù)軸上的點與實數(shù)成一一對應關(guān)系;一個數(shù)的算術(shù)平方根仍是它本身,這樣的數(shù)有三個;任何實數(shù)不是有理數(shù)就是無理數(shù);兩個無理數(shù)的和還是無理數(shù);無理數(shù)都是無限小數(shù),正確的個數(shù)有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習冊答案