【題目】平行四邊形ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AB=CD,AB∥CD,

∴DF∥BE,

∵CF=AE,

∴DF=BE,

∴四邊形BFDE是平行四邊形,

∵DE⊥AB,

∴∠DEB=90°,

∴四邊形BFDE是平行四邊形


(2)解:∵AB∥CD,

∴∠BAF=∠AFD,

∵AF平分∠BAD,

∴∠DAF=∠AFD,

∴AD=DF,

在Rt△ADE中,∵AE=3,DE=4,

∴AD= =5,

∴矩形的面積為20


【解析】(1)根據(jù)有一個(gè)角是90度的平行四邊形是矩形即可判定.(2)首先證明AD=DF,求出AD即可解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°

(1)作邊AB的垂直平分線交AB于點(diǎn)D,交BC于點(diǎn)E(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡).

(2)連接AE,求證:AE=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的兩條中線AD、CE交于點(diǎn)G,且AD⊥CE.連接BG并延長(zhǎng)與AC交于點(diǎn)F,若AD=9,CE=12,則GF為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)解方程:x2﹣2x﹣8=0;
(2)解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=AD-BE;

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)直接寫(xiě)出這個(gè)等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問(wèn)題:

已知:如圖,四邊形ABCD是平行四邊形;

求作:菱形AECF,使點(diǎn)E,F分別在BCAD上.

小凱的作法如下:

(1)連接AC;

(2)AC的垂直平分線EF分別交BC,ADE,F

(3)連接AE,CF

所以四邊形AECF是菱形.

老師說(shuō):“小凱的作法正確”.

回答下列問(wèn)題:

根據(jù)小凱的做法,小明將題目改編為一道證明題,請(qǐng)你幫助小明完成下列步驟:

(1)已知:在平行四邊形ABCD中,點(diǎn)E、F分別在邊BC、AD上,   (補(bǔ)全已知條件)

求證:四邊形AECF是菱形.

(2)證明:(寫(xiě)出證明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(4,0),且當(dāng)x=﹣2和x=5時(shí)二次函數(shù)的函數(shù)值y相等.

(1)求實(shí)數(shù)a、b的值;
(2)如圖1,動(dòng)點(diǎn)E、F同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)E以每秒2個(gè)單位長(zhǎng)度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒 個(gè)單位長(zhǎng)度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)F隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.
①是否存在某一時(shí)刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
②設(shè)△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案