【題目】某市開展一項(xiàng)自行車旅游活動(dòng),線路需經(jīng)A,B,C,D四地,如圖,其中A,B,C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
【答案】解:由題意可知∠DCA=180°﹣75°﹣45°=60°,
∵BC=CD,
∴△BCD是等邊三角形.
過點(diǎn)B作BE⊥AD,垂足為E,如圖所示:
由題意可知∠DAC=75°﹣30°=45°,
∵△BCD是等邊三角形,
∴∠DBC=60° BD=BC=CD=20km,
∴∠ADB=∠DBC﹣∠DAC=15°,
∴BE=sin15°BD≈0.25×20≈5m,
∴AB= = ≈7m,
∴AB+BC+CD≈7+20+20≈47m.
答:從A地跑到D地的路程約為47m.
【解析】解直角三角形的基本方法是把已知角放在直角三角形中,因此需過B作垂線構(gòu)造直角三角形,由三角函數(shù)可求出BE,再由BE求出AB, 進(jìn)而求出整個(gè)路程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知直線BC//ED.
(1)若點(diǎn)A在直線DE上,且∠B=44°,∠EAC=30°,求∠BAC的度數(shù);
(2)若點(diǎn)G在BC的延長線上,求證:∠ACG =∠BAC+∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形ABCD的邊長為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
①AE=EF是否總成立?請(qǐng)給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在拋物線y=﹣x2+x+1上,求此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場(chǎng)批發(fā)獼猴桃和芒果共50千克,后再到水果市場(chǎng)去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價(jià)和零售價(jià)如表所示:
品名 | 獼猴桃 | 芒果 |
批發(fā)價(jià)元千克 | 20 | 40 |
零售價(jià)元千克 | 26 | 50 |
他購進(jìn)的獼猴桃和芒果各多少千克?
如果獼猴桃和芒果全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)第1次用39萬元購進(jìn)A、B兩種商品,銷售完后獲得利潤6萬元,它們的進(jìn)價(jià)和售價(jià)如下表:總利潤單件利潤銷售量
商品價(jià)格 | A | B |
進(jìn)價(jià)元件 | 1200 | 1000 |
售價(jià)元件 | 1350 | 1200 |
(1)該商場(chǎng)第1次購進(jìn)A、B兩種商品各多少件?
(2)商場(chǎng)第2次以原進(jìn)價(jià)購進(jìn)A、B兩種商品,購進(jìn)A商品的件數(shù)不變,而購進(jìn)B商品的件數(shù)是第1次的2倍,A商品按原售價(jià)銷售,而B商品按原售價(jià)打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營活動(dòng)獲得利潤等于54000元,則B種商品是打幾折銷售的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解并解答:
為了求1+2+22+23+24+…+22009的值.
可令S=1+2+22+23+24+…+22009
則2S=2+22+23+24+…+22009+22010
因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1
所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1
請(qǐng)依照此法,求:1+5+52+53+54+…+52020的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏思考解決如下問題:
原題:如圖1,四邊形ABCD中,,點(diǎn)P,Q分別在四邊形ABCD的邊BC,CD上,,求證:.
______;
小敏進(jìn)行探索,如圖2,將點(diǎn)P,Q的位置特殊化,使,,點(diǎn)E,F分別在邊BC,CD上,此時(shí)她證明了請(qǐng)你證明此時(shí)結(jié)論;
受以上的啟發(fā),在原題中,添加輔助線:如圖3,作,,垂足分別為E,F,請(qǐng)你繼續(xù)完成原題的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△ABC的斜邊長為5,斜邊上的高為2,將這個(gè)直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點(diǎn)C落在y軸正半軸上(如圖1).
(1)求線段OA,OB的長和經(jīng)過點(diǎn)A,B,C的拋物線的關(guān)系式.
(2)如圖2,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n>0),連接DP交BC于點(diǎn)E.
①當(dāng)△BDE是等腰三角形時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo).
②又連接CD、CP(如圖3),△CDP是否有最大面積?若有,求出△CDP的最大面積和此時(shí)點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)閱讀:
古希臘數(shù)學(xué)家海倫曾提出一個(gè)利用三角形三邊之長求面積的公式:若一個(gè)三角形的三邊長分別為a、b、c,則這個(gè)三角形的面積為,其中.這個(gè)公式稱為“海倫公式”.
數(shù)學(xué)應(yīng)用:
如圖1,在△ABC中,已知AB=9,AC=8,BC=7.
(1)請(qǐng)運(yùn)用海倫公式求△ABC的面積;
(2)設(shè)AB邊上的高為,AC邊上的高,求的值;
(3)如圖2,AD、BE為△ABC的兩條角平分線,它們的交點(diǎn)為I,求△ABI的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com