【題目】如圖,,分別以AB、AC為邊作等邊三角形ABD與等邊三角形ACE,連接BE、CD,BE的延長線與CD交于點F,連接AF,有以下四個結(jié)論:①;②FA平分;③;④.其中一定正確的結(jié)論有( )
A.1B.2C.3D.4
【答案】C
【解析】
根據(jù)等邊三角形的性質(zhì)證出△BAE≌△DAC,可得BE=CD,從而得出①正確;
過A作AM⊥BF于M,過A作AN⊥DC于N,由△BAE≌△DAC得出∠BEA=∠ACD,由等角的補角相等得出∠AEM=∠CAN,由AAS可證△AME≌△ANC,得到AM=AN,由角平分線的判定定理得到FA平分∠EFC,從而得出②正確;
在FA上截取FG,使FG=FE,根據(jù)全等三角形的判定與性質(zhì)得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,從而得出④正確;
根據(jù)CF+EF=AF,CF+DF=CD,得出CD≠AF,從而得出FE≠FD,即可得出③錯誤.
∵△ABD和△ACE是等邊三角形,
∴∠BAD=∠EAC=60°,AE=AC=EC.
∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,
∴∠BAE=∠DAC,
在△BAE和△DAC中,
∵,
∴△BAE≌△DAC(SAS),
∴BE=CD,①正確;
過A作AM⊥BF于M,過A作AN⊥DC于N,如圖1.
∵△BAE≌△DAC,
∴∠BEA=∠ACD,
∴∠AEM=∠ACN.
∵AM⊥BF,AN⊥DC,
∴∠AME=∠ANC.
在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,
∴△AME≌△ANC,
∴AM=AN.
∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正確;
在FA上截取FG,使FG=FE,如圖2.
∵∠BEA=∠ACD,∠BEA+∠AEF=180°,
∴∠AEF+∠ACD=180°,
∴∠EAC+∠EFC=180°.
∵∠EAC=60°,
∴∠EFC=120°.
∵FA平分∠EFC,
∴∠EFA=∠CFA=60°.
∵EF=FG,∠EFA=60°,
∴△EFG是等邊三角形,
∴EF=EG.
∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,
∴∠AEG=∠CEF,
在△AGE和△CFE中,
∵,
∴△AGE≌△CFE(SAS),
∴AG=CF.
∵AF=AG+FG,
∴AF=CF+EF,④正確;
∵CF+EF=AF,CF+DF=CD,CD≠AF,
∴FE≠FD,③錯誤,
∴正確的結(jié)論有3個.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚棋子放在⊙O上的點A處,通過摸球來確定該棋子的走法.
其規(guī)則如下:在一只不透明的口袋中,裝有3個標(biāo)號分別為1,2,3的相同小球.充分?jǐn)噭蚝髲闹须S機摸出1個,記下標(biāo)號后放回袋中并攪勻,再從中隨機摸出1個,若摸出的兩個小球標(biāo)號之積是m,就沿著圓周按逆時針方向走m步(例如:m=1,則A﹣B;若m=6,則A﹣B﹣C﹣D﹣A﹣B﹣C).用列表或樹狀圖,分別求出棋子走到A、B、C、D點的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1、l2、l3分別交直線l4于點A、B、C,交直線l5于點D、E、F,且l1∥l2∥l3 , 已知EF:DF=5:8,AC=24.
(1)求AB的長;
(2)當(dāng)AD=4,BE=1時,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD=AE,添加下列條件仍無法證明△ABE≌△ACD的是 ( )
A. AB=AC B. ∠ADC=∠AEB C. ∠B=∠C D. BE=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):
當(dāng),時,
,
,當(dāng)且僅當(dāng)時取等號.
請利用上述結(jié)論解決以下問題:
(1)當(dāng)時,的最小值為__________.
(2)當(dāng)時,求的最小值.
(3)請解答以下問題:
如圖所示,某園藝公司準(zhǔn)備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成,設(shè)垂直于墻的一邊長為米.若要圍成面積為200平方米的花圃,需要用的籬笆最少是__________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD,CE分別是∠ABC,∠ACB的平分線,且DE∥BC,∠A=36°,則圖中等腰三角形共有_____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校對八年級學(xué)生的學(xué)習(xí)態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生;
(2)通過計算達(dá)到C級的有多少人?并補全條形圖.
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近80000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)指的是學(xué)習(xí)興趣達(dá)到A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com