【題目】如圖,直線l1:y=x與雙曲線y= 相交于點A(a,2),將直線l1向上平移3個單位得到l2 , 直線l2與雙曲線相交于B、C兩點(點B在第一象限),交y軸于D點.
(1)求雙曲線y= 的解析式;
(2)求tan∠DOB的值.

【答案】
(1)解:∵A(a,2)是y=x與y= 的交點,

∴A(2,2),

把A(2,2)代入y= ,得k=4,

∴雙曲線的解析式為y=


(2)解:∵將l1向上平移了3個單位得到l2,

∴l(xiāng)2的解析式為y=x+3,

∴解方程組 ,

,

∴B (1,4),

∴tan∠DOB=


【解析】(1)由點A(a,2)在直線y=x上可知a=2,再代入y= 中求k的值即可;(2)將l1向上平移了3個單位得到l2的解析式為y=x+3,聯(lián)立l2與雙曲線解析式求交點B坐標,根據(jù)B點坐標,利用銳角三角函數(shù)定義求解.
【考點精析】根據(jù)題目的已知條件,利用銳角三角函數(shù)的定義的相關知識可以得到問題的答案,需要掌握銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題. 隨著人們環(huán)保意識的增強及科學技術的進步,各種綠色環(huán)保新產(chǎn)品進入千家萬戶,今年一月份小楠家將天然氣熱水器換成了太陽能熱水器,減少天然氣的用量,去年12月份小楠家的天然氣費一共是96元,從今年一月份起天然氣費價格每立方米上漲了25%,小楠家2月份的用氣量比去年12月份少10立方米,2月份的天然氣費一共是90元,請你求小楠家今年2月份用氣量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:

(1)xx-1)+2xx+1)-(3x-1)(2x-5),其中x=2.

(2),其中=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵居民節(jié)約用水,某市對居民用水收費實行“階梯價”,按每年用水量統(tǒng)計,不超過180立方米的部分按每立方米5元收費;超過180立方米不超過260立方米的部分按每立方米7元收費;超過260立方米的部分按每立方米9元收費.

(1)設每年用水量為x立方米,“階梯價”應繳水費y元,請寫出y(元)x(立方米)之間的函數(shù)解析

(2)明明預計2015全年用水量為200立方米,那么按“階梯價”收費,她家應繳水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線.將DCB繞著點D順時針旋轉45°得到DGH,HGAB于點E,連接DEAC于點F,連接FG.則下列結論:

①四邊形AEGF是菱形②△AED≌△GED③∠DFG=112.5°BC+FG=1.5其中正確的結論是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們運用圖(Ⅰ)中大正方形的面積可表示為(a+b)2,也可表示為c3+4(ab),即(a+b)2=c2+4(ab)由此推導出一個重要的結論a2+b2=c2,這個重要的結論就是著名的勾股定理.這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學規(guī)律和公式的方法,簡稱無字證明”.

(1)請你用圖(Ⅱ)(2002年國際數(shù)學家大會會標)的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).

(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+2y)2=x2+4xy+4y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,已知:,,,以斜邊AB的中點P為旋轉中心,把這個三角形按逆時針方向旋轉得到,則旋轉前后兩個直角三角形重疊部分的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號,單個盒子的容量和價格如表格所示.現(xiàn)有15升食物需要存放且要求每個盒子都要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性每個返還現(xiàn)金1.5元,則該食堂購買盒子所需的最少費用是

型號

A

B

單個盒子容量(升)

2

3

單價(元)

5

6

查看答案和解析>>

同步練習冊答案