【題目】在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)坐標(biāo)分別為A(1,0),B(0,2),C(2,1);

1)以原點(diǎn)O為位似中心,在第二象限畫出A1B1C1,使A1B1C1ABC的位似比為21;

2)點(diǎn)Pa,b)為線段AC上的任意一點(diǎn),則點(diǎn)PA1B1C1中的對應(yīng)點(diǎn)P1的坐標(biāo)為

【答案】1)見解析;(2)坐標(biāo)為(-2a,-2b

【解析】

1)依據(jù)以原點(diǎn)O為位似中心,A1B1C1ABC的位似比為21作圖即可;

解:(1)如圖所示,以原點(diǎn)O為位似中心,A1B1C1ABC的位似比為21,

則△AB1C1即為所求;

2)如圖所示,

Pa,b)為線段AC上的任意一點(diǎn),點(diǎn)P, P1以原點(diǎn)O為位似中心,

∴點(diǎn)P1在線段A1C1上,并且P1坐標(biāo)為:(-2a-2b.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大數(shù)學(xué)家歐拉非常推崇觀察能力,他說過,今天已知的許多數(shù)的性質(zhì),大部分是通過觀察發(fā)現(xiàn)的,歷史上許多大家,都是天才的觀察家化歸就是將面臨的新問題轉(zhuǎn)化為已經(jīng)熟悉的規(guī)范問題的數(shù)學(xué)方法,這是一種具有普遍適用性的數(shù)學(xué)思想方法如多項(xiàng)式除以多項(xiàng)式可以類比于多位數(shù)的除法進(jìn)行計(jì)算:

請用以上方法解決下列問題:

1)計(jì)算:;

2)若關(guān)于x的多項(xiàng)式能被二項(xiàng)式整除,且ab均為自然數(shù),求滿足以上條件的ab的值及相應(yīng)的商.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長為(

A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)低碳環(huán)保,綠色出行的公益活動,小燕和媽媽決定周日騎自行車去圖書館借書.她們同時(shí)從家出發(fā),小燕先以150/分的速度騎行一段時(shí)間,休息了5分鐘,再以m/分鐘的速度到達(dá)圖書館,而媽媽始終以120/分鐘的速度騎行,兩人行駛的路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖,請結(jié)合圖像,解答下列問題:

1)圖書館到小燕家的距離是 米;

2a= ,b= ,m= ;

3)媽媽行駛的路程y(米)關(guān)于時(shí)間x(分鐘)的函數(shù)解析式是 ;定義域是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,ADBC垂足是D,AN是∠BAC的外角∠CAM的平分線,CEAN,垂足是E,連接DEACF

1)求證:四邊形ADCE為矩形;

2)求證:DFAB,DF;

3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE為正方形,簡述你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,OB=OC=2AB=.

(1)求點(diǎn)D的坐標(biāo),直線CD的函數(shù)表達(dá)式;

(2)已知點(diǎn)P是直線CD上一點(diǎn),當(dāng)點(diǎn)P滿足SPAO=SABO時(shí),求點(diǎn)P的坐標(biāo);

(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F(不與A、B重合),使以A、 C F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等邊△ABC中,點(diǎn)D是邊AC上一點(diǎn),連接BD,將△BCD繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)60,得到△BAE,連接ED,則下列結(jié)論中:①AE∥BC;②∠DEB=60;③∠ADE=∠BDC,其中正確結(jié)論的序號是(

A.①②B.①③C.②③D.只有①

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一、閱讀材料:

已知實(shí)數(shù)m,n滿足(2m2n21)(2m2n21=80,試求2m2n2的值.

解:設(shè)2m2n2=t,則原方程變?yōu)椋?/span>t1)(t1=80,整理得t21=80,t2=81,所以t=9,因?yàn)?/span>2m2n20,所以2m2n2=9

二、方法歸納:

上面這種方法稱為“     法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.

三、探索實(shí)踐:

根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.

1)已知實(shí)數(shù)x、y,滿足(2x22y23)(2x22y23=27,求x2y2的值.

2)已知RtACB的三邊為ab、cc為斜邊),其中a、b滿足(a2b2)(a2b24=5,求RtACB外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲乙兩個不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字1,2,3,4,乙口袋中的小球上分別標(biāo)有數(shù)字2,34,先從甲袋中任意摸出一個小球,記下數(shù)字為m,再從乙袋中摸出一個小球,記下數(shù)字為n

1)請用列表或畫樹狀圖的方法表示出所有(m,n)可能的結(jié)果;

2)若mn都是方程x25x+60的解時(shí),則小明獲勝;若m,n都不是方程x25x+60的解時(shí),則小利獲勝,問他們兩人誰獲勝的概率大?

查看答案和解析>>

同步練習(xí)冊答案