【題目】已知:如圖在平行四邊形ABCD中,過對(duì)角線BD的中點(diǎn)O作直線EF分別交DA的延長(zhǎng)線、AB、DC、BC的延長(zhǎng)線于點(diǎn)E、MN、F

1)觀察圖形并找出一對(duì)全等三角形:_≌△_,請(qǐng)加以證明;

2)在(1)中你所找出的一對(duì)全等三角形,其中一個(gè)三角形可由另一個(gè)三角形經(jīng)過怎樣的變換得到?

【答案】1DOE≌△BOF;證明見解析;(2)繞點(diǎn)O旋轉(zhuǎn)180°后得到或以點(diǎn)O為中心作對(duì)稱變換得到.

【解析】

1)本題要證明如ODE≌△BOF,已知四邊形ABCD是平行四邊形,具備了同位角、內(nèi)錯(cuò)角相等,又因?yàn)?/span>OD=OB,可根據(jù)AAS能判定DOE≌△BOF;

2)平行四邊形是中心對(duì)稱圖形,這對(duì)全等三角形中的一個(gè)是以其中另一個(gè)三角形繞點(diǎn)O旋轉(zhuǎn)180°后得到或以點(diǎn)O為中心作對(duì)稱變換得到.

1DOE≌△BOF;

證明:∵四邊形ABCD是平行四邊形,

ADBC

∴∠EDO=FBO,∠E=F

又∵OD=OB,

∴△DOE≌△BOFAAS).

2)繞點(diǎn)O旋轉(zhuǎn)180°后得到或以點(diǎn)O為中心作對(duì)稱變換得到.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將三角形ABC向右平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度請(qǐng)回答下列問題:

1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1   ,B1   C1   ;

2)畫出平移后三角形A1B1C1

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線yx與反比例函數(shù)yk/x在第一象限內(nèi)的圖象相交于點(diǎn)A(m,3).

(1)求該反比例函數(shù)的關(guān)系式;

(2)將直線yx沿y軸向上平移8個(gè)單位后與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B,連接AB,這時(shí)恰好ABOA,求tanAOB的值;

(3)(2)的條件下,在射線OA上存在一點(diǎn)P,使PAB∽△BAO,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,E,F是對(duì)角線BD上的兩點(diǎn), 如果添加一個(gè)條件使ABE≌△CDF,則添加的條件不能是( 。

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一RtABC,且A﹣1,3,B﹣3,﹣1,C﹣3,3,已知A1AC1是由ABC旋轉(zhuǎn)得到的

1請(qǐng)寫出旋轉(zhuǎn)中心的坐標(biāo)是 ,旋轉(zhuǎn)角是 度;

21中的旋轉(zhuǎn)中心為中心,分別畫出A1AC1順時(shí)針旋轉(zhuǎn)90°、180°的三角形;

3設(shè)RtABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面上有射線和點(diǎn),,請(qǐng)用尺規(guī)按下列要求作圖:

(1)連接,并在射線上截取;

(2)連接,并延長(zhǎng),使

(3)(2)的基礎(chǔ)上,取中點(diǎn),若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,(1)在正三角形ABC中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長(zhǎng)線上一點(diǎn),N是∠ACP的平分線上一點(diǎn),若∠AMN=60°,求證:AM=MN.

(2)若將(1)中正三角形ABC”改為正方形ABCD”,N是∠DCP的平分線上一點(diǎn),若∠AMN=90°,則AM=MN是否成立?若成立,請(qǐng)證明;若不成立,說明理由.

(3)若將(2)中的正方形ABCD”改為n邊形A1A2…An,其它條件不變,請(qǐng)你猜想:當(dāng)∠An2MN=_____°時(shí),結(jié)論An2M=MN仍然成立.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解市民獲取新聞的最主要途徑,某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問題.

1)這次抽樣調(diào)查的樣本容量是__________

2)通過電視了解新聞的人數(shù)占被調(diào)查人數(shù)的百分比為______;扇形統(tǒng)計(jì)圖中,手機(jī)上網(wǎng)所對(duì)應(yīng)的圓心角的度數(shù)是_________

3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

4)若該市約有950萬(wàn)人,請(qǐng)你估計(jì)其中將電腦和手機(jī)上網(wǎng)作為獲取新聞的最主要途徑的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為整圓.如圖,直線l:y=kx+4x軸、y軸分別交于A、B,OAB=30°,點(diǎn)Px軸上,⊙Pl相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習(xí)冊(cè)答案