【題目】(題文)如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①S△ABF=S△ADF;②S△CDF=2S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正確的是( )
A. ①②③ B. ②③ C. ①④ D. ①②④
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在ABCD中,對角線AC與BD相交于點O,△AOB是等邊三角形,AB=4,求ABCD的面積.
(2)如圖2,在△ABC中,∠B=90°,∠A=30°,D是邊AB上一點,∠BDC=45°,AD=4,求BC的長(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學活動課上,小明提出這樣一個問題:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,∠CDE=55°.如圖,則∠EAB的度數為_________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九(1)班數學興趣小組經過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元[
(1)求出y與x的函數關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知是等邊三角形,是上一點,繞點逆時針旋轉到的位置.
(1)如圖,旋轉中心是 , ;
(2)如圖,如果是的中點,那么經過上述旋轉后,點 轉動了 度;
(3)如果點為邊上的三等分點,且的面積為,那么四邊形的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線AB:y=kx﹣2(k≠0)與反比例函數的圖象相交于點A和點B(﹣4,2),直線l的解析式為:y=x+b.
(1)求反比例函數和直線AB的解析式;
(2)若直線l恰好與反比例函數的圖象僅僅交于一個點,求直線l的解析式;
(3)在(2)的條件下,如圖,若直線l與反比例函數的圖象交于第四象限的點C,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=6,BC的中點為D,將△ABC繞點C順時針旋轉任意一個角度得到△FEC,EF的中點為G,連接DG在旋轉過程中,DG的最大值是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=AC,點D在邊AC上,將△ABD繞點B順時針旋轉得到△CBE,連接ED并延長交BA的延長線于點F.
(1)求證:∠CDE=∠ABD;
(2)探究線段AD,CD,BE之間的數量關系,并說明理由;
(3)若AD=1,CD=3,求線段EF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com