【題目】已知:如圖,⊙O內切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的長.
【答案】BC、AC的長分別是10cm、cm.
【解析】
先根據 O內切于△ABC,得出∠ABO=∠CBO,∠BCO=∠ACO,再根據∠ACB=90°,得出∠BCO=45°,再根據三角形內角和定理得出∠OBC的度數,從而求出∠ABC和∠A的度數,即可求出BC的長,再根據勾股定理即可求出AC.
解:∵圓O內切于△ABC,
∴∠ABO=∠CBO,∠BCO=∠ACO,
∵∠ACB=90°,
∴∠BCO=×90°=45°,
∵∠BOC=105°,
∴∠CBO=180°45°105°=30°,
∴∠ABC=2∠CBO=60°,
∴∠A=30°,
∴BC=AB=×20=10cm,
∴AC=
∴BC、AC的長分別是10cm、cm.
科目:初中數學 來源: 題型:
【題目】閱讀下面的材料,回答問題:
解方程x4-5x2+4=0,這是一個一元四次方程,根據該方程的特點,它的解法通常是:
設x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y2-5y+4=0 ①,解得y1=1,y2=4.
當y=1時,x2=1,∴x=±1;當y=4時,x2=4,∴x=±2;
∴原方程有四個根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過程中,利用 法(把未知數x換為 y)達到降次的目的.
(2)解方程:(x2+3x)2+5(x2+3x)-6=0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=-1,有以下結論:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正確的結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB、CD分別切⊙O于A、B、E,CD交PA、PB于C、D兩點,若∠P=40°,則∠PAE+∠PBE的度數為( )
A. 50° B. 62° C. 66° D. 70°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于頻率與概率有下列幾種說法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;③“某彩票中獎的概率是1%”表示買10張該種彩票不可能中獎;④“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近,正確的說法是( )
A. ②④B. ②③C. ①④D. ①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,CD⊥AB,垂足為D,AC=20,BC=15.動點P從A開始,以每秒2個單位長的速度沿AB方向向終點B運動,過點P分別作AC、BC邊的垂線,垂足為E、F.
(1)求AB與CD的長;
(2)當矩形PECF的面積最大時,求點P運動的時間t;
(3)以點C為圓心,r為半徑畫圓,若圓C與斜邊AB有且只有一個公共點時,求r的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸交于點O、A,把拋物線在x軸及其上方的部分記為C1,將C1以y鈾為對稱軸作軸對稱得到C2,C2與x軸交于點B,若直線y=x+m與C1,C2共有3個不同的交點,則m的取值范圍是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分)如圖,在平面直角坐標系中,點A(,1)、B(2,0)、O(0,0),反比例函數y=圖象經過點A.
(1)求k的值;
(2)將△AOB繞點O逆時針旋轉60°,得到△COD,其中點A與點C對應,試判斷點D是否在該反比例函數的圖象上?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com